Unwind Library

Quantifier Heuristics in HOL4

Thomas Tuerk

1st February 2011

• eliminating quantifiers is often beneficial

- HOL4's simplifier uses the *unwind* library
- the unwind library can handle simple examples

Unwind Library Example

$$\forall x \ y. \ P(x, y) \land (x = c) \Longrightarrow Q(x)$$

$$\forall y. \ P(c, y) \Longrightarrow Q(c)$$

the unwind library is fast and often usefulhowever, it is restricted to equality and certain patterns

Unwind Library Failing Example

 $\forall x. \ (\exists y. \ P(x, y) \land (x = c)) \Longrightarrow Q(x)$

Quantifier Heuristics Library

Quantifier Heuristics Library Examples

- this talk presents the *Quantifier Heuristics Library*
- it can handle more complicated terms
- automatically uses matching as well as equality
- uses information about datatypes
- allows partial instantiations
- is user extendable
- ${\scriptstyle { \bullet } }$ allows guessing without proof

Quantifier Heuristics Library Examples				
$\forall x. (\exists y. P(x,y) \land (x=c)) \Longrightarrow Q(x)$	\leftrightarrow	$(\exists y. P(c,y)) \Longrightarrow Q(c)$		
$\exists x. \ P(f(x)) \land \ (f(x) = f(c))$	\leftrightarrow	P(f(c))		
$\exists x. \ P(x) \land ((c_1, x) = c_2)$	\leftrightarrow	$\begin{array}{l} P(\textit{SND} \ c_2) \land \\ (c_1 = \textit{FST} \ c_2) \end{array}$		
$\forall x. \ IS_SOME(x) \Longrightarrow P(x)$	\leftrightarrow	$\forall x_x. P(SOME(x_x))$		
$\forall x. \ x \neq [] \Longrightarrow P(x)$	\leftrightarrow	$\forall x_t x_h. P(x_h :: x_t)$		

General Idea

- Given a term ∃x. P(x) one is interested in finding an instantiation i such that ∃x. P(x) ⇔ ∃fv. P(i(fv)) holds.
- Similarly, given ∀x. P(x) one is interested in finding i such that ∀x. P(x) ⇔ ∀fv. P(i(fv)) holds.
- This leads to the following definitions of guesses:
 - $\begin{array}{l} GUESS_EXISTS \ (\lambda fv. \ i(fv)) \ (\lambda x. \ P(x)) \end{array} \stackrel{\text{def}}{=} \\ \exists x. \ P(x) \Leftrightarrow \exists fv. \ P(i(fv)) \end{array}$
 - $\begin{array}{l} GUESS_FORALL \ (\lambda fv. \ i(fv)) \ (\lambda x. \ P(x)) \end{array} \stackrel{\text{def}}{=} \\ \forall x. \ P(x) \Leftrightarrow \forall fv. \ P(i(fv)) \end{array}$
- Idea: construct guesses bottom up

Stronger Guesses I

- Problem: GUESS_EXISTS and GUESS_FORALL do not behave well for bottom up analysis
- they don't carry enough information / they are too weak
- let's introduce stronger guesses for existential quantification
- *i* is chosen, because it satisfies *P*:

 $GUESS_TRUE (\lambda fv. i(fv)) (\lambda x. P(x)) \stackrel{\text{def}}{=} \forall fv. P(i(fv))$

- *i* is chosen, because all other instantiations do not satisfy *P*:
 - $GUESS_EXISTS_STRONG \ (\lambda fv. \ i(fv)) \ (\lambda x. \ P(x)) \stackrel{\text{def}}{=} \\ \forall x. \ P(x) \Longrightarrow \exists fv. \ x = i(fv)$

Stronger Guesses II

Stronger Guesses III

- GUESS_TRUE and GUESS_EXISTS_STRONG behave nicely
- *GUESS_TRUE* behaves nicely with disjunctions

 $\begin{array}{l} GUESS_TRUE \ i_{fv} \ (\lambda x. \ P(x)) \\ GUESS_TRUE \ i_{fv} \ (\lambda x. \ P(x) \lor Q(x)) \end{array} \Longrightarrow$

• GUESS_EXISTS_STRONG behaves nicely with conjunctions

 $\begin{array}{l} GUESS_EXISTS_STRONG \ i_{fv} \ (\lambda x. \ P(x)) \\ GUESS_EXISTS_STRONG \ i_{fv} \ (\lambda x. \ P(x) \land Q(x)) \end{array} \Longrightarrow$

• other, more complicated rules exists as well

- Guesses dual to GUESS_TRUE and GUESS_EXISTS_STRONG are introduced for universal quantification
- *i* is chosen, because it does not satisfy *P*:

 $GUESS_FALSE \ (\lambda fv. \ i(fv)) \ (\lambda x. \ P(x)) \stackrel{\text{def}}{=} \forall fv. \ \neg(P(i(fv)))$

• *i* is chosen, because all other instantiations satisfy *P*:

 $GUESS_FORALL_STRONG (\lambda fv. i(fv)) (\lambda x. P(x)) \stackrel{\text{def}}{=} \\ \forall x. \neg P(x) \Longrightarrow \exists fv. x = i(fv)$

Hierarchy of Guesses	Selected Inference Rules
$\begin{array}{cccc} GUESS_TRUE & \stackrel{dual}{\longleftrightarrow} & GUESS_FALSE \\ & & & & & \\ & & & & & \\ GUESS_EXISTS & \stackrel{dual}{\longleftrightarrow} & GUESS_FORALL \\ & & & & & \\ & & & & & \\ GUESS_EXISTS_STRONG & \stackrel{dual}{\longleftrightarrow} & GUESS_FORALL_STRONG \end{array}$	$GUESS_EXISTS i_{fv} (\lambda x. P(x)) \qquad \Longleftrightarrow GUESS_FORALL i_{fv} (\lambda x. \neg P(x)) \qquad \Longrightarrow GUESS_FORALL i_{fv} (\lambda x. P(x)) \qquad \Longrightarrow GUESS_TRUE i_{fv} (\lambda x. P(x)) \Rightarrow Q(x)) \qquad \Longrightarrow GUESS_FORALL i_{fv} (\lambda x. P(x)) \qquad \Rightarrow GUESS_FORALL i_{fv} (\lambda x. P(x) \lor q) \qquad \Longrightarrow GUESS_FORALL i_{fv} (\lambda x. P(x)) \land GUESS_FALSE i_{fv} (\lambda x. Q(x)) \qquad \Rightarrow GUESS_FALSE i_{fv} (\lambda x. P(x) \lor Q(x)) \qquad \Rightarrow GUESS_FALSE i_{fv} (\lambda x. P(x) \lor Q(x)) \qquad \Rightarrow GUESS_FORALL (\lambda fv. i(fv, y)) (\lambda x. P(x, y)) \qquad \Rightarrow GUESS_FORALL (\lambda (fv, y). i(fv, y)) (\lambda x. \forall y. P(x, y)) \qquad \Rightarrow $

Base Case: Equation

Base Case: Datatype Cases

• equations allow the following guesses

 $GUESS_TRUE (\lambda fv. i) (\lambda x. x = i)$ $GUESS_EXISTS_STRONG (\lambda fv. i) (\lambda x. x = i)$

• using matching, one also gets

 $P(i) = Q(i) \implies$ $GUESS_TRUE (\lambda fv. i) (\lambda x. P(x) = Q(x))$

• one can also use disequations

 $\forall fv. \ P(i(fv)) \neq Q(i(fv)) \implies \\ GUESS_FALSE \ (\lambda fv. \ i(fv)) \ (\lambda x. \ P(x) = Q(x))$

• Many datatypes like lists or options consist of exactly two cases. Such case theorems can be used as follows:

 $(\forall x. \ x = c_1 \lor \exists fv. \ x = c_2(fv)) \Longrightarrow$ GUESS_FORALL_STRONG ($\lambda fv. \ c_2(fv)$) ($\lambda x. \ x = c_1$)

• Types like pairs only allow a single form:

 $(\forall x. \exists fv. x = c(fv)) \Longrightarrow \\ GUESS_FORALL_STRONG (\lambda fv. c(fv)) (\lambda x. P(x))$

 $(\forall x. \exists fv. x = c(fv)) \Longrightarrow \\ GUESS_EXISTS_STRONG (\lambda fv. c(fv)) (\lambda x. P(x))$

Overview

- the ideas described so far are implemented by *quantHeuristicsLib*
- the core of this framework is a bottom-up search for guesses
- quantifier reordering and minimising of variable occurrences aid the search
- guesses are used to instantiate existential, universal and unique existential quantification
- the main tools of quantHeuristicsLib are
 - QUANT_INSTANTIATE_CONV
 - QUANT_INSTANTIATE_TAC
 - ASM_QUANT_INSTANTIATE_TAC
 - QUANT_INST_ss
- standard Boolean operations and equations are built in
- a list of *quantifier heuristics parameters* (qp) can be used for extensions

- ${\scriptstyle \bullet }$ quantifier heuristic parameters extend the search for guesses
- usually they contain information about special predicates or datatypes

type quant_param =

{distinct_thms	:	thm list,
cases_thms	:	thm list,
inference_thms	:	thm list,
rewrite_thms	:	thm list,
convs	:	conv list,
filter	:	(term -> term -> bool) list,
heuristics	:	list,
top_heuristics	:	list,
final_rewrite_thms	:	thm list};

Predefined QPs

- quantHeuristicsLib defines the following QPs
 - TypeBase_qp
 - stateful_qp
 - get_qp___for_types
- quantHeuristicsArgsLib defines QPs for common datatypes
 - option_qp
 - Iist_qp
 - ⊛ num_qp
 - pair_default_qp
 - record_default_qp
- all these are combined in std_qp

Unjustified Guesses

- so far, all guesses are justified by theorems
- unjustified guesses are supported as well
- unjustified guesses result in implications

 $\forall x. \ P(x) \Longrightarrow \forall fv. \ P(i(fv))$

- $\exists fv. \ P(i(fv)) \Longrightarrow \exists x. \ P(x)$
- sometimes these implications are sufficient
- consequence conversions are used to apply these implications at subpositions
- QUANT_INST_CONV and QUANT_INST_TAC allow to instantiate quantifiers at subpositions with user-provided values

Quantifier Heuristic Parameters

Conclusion

Examples

٢	the	quantifier	heuristics	li	brary	is	powerfu	I
---	-----	------------	------------	----	-------	----	---------	---

- it is easy to use
- easily extendable by adding theorems
- ${\ensuremath{\, \bullet \,}}$ details can be customised using user-defined heuristics written in ML
- however, slower than unwind library

 $\exists x. if b(x) then ((x = 2) \land Q_1(x)) else (Q_2(x) \land (x = 2)) \leftrightarrow$ if b(2) then Q₁(2) else Q₂(2) $\exists b = (x = 2) \land Q_2(x) \land (x = 2) \land$

$\exists !x. \ (x=2) \land Q(x)$	\leftrightarrow	Q(2)
$\exists x. P(f(x)) \land (f(x) = f(c))$	\leftrightarrow	P(f(c))
$\exists x. \ P(x) \land ((c_1, x) = c_2)$	\leftrightarrow	$P(SND \ c_2) \land (c_1 = FST \ c_2)$
$\exists p. (x = FST(p)) \land Q(p)$	\leftrightarrow	$\exists p_2. \ Q((x, p_2))$
$\forall x. \ (x \neq 0) \Longrightarrow P(x)$	\leftrightarrow	$\forall x_n. P(SUC(x_n))$
$\forall x. (x = 7) \land P(x)$	\leftrightarrow	F
$\exists x. (f(x) = f(c)) \lor P(x)$	\leftrightarrow	Т