
Quantifier Heuristics in HOL4

Thomas Tuerk

1st February 2011

Unwind Library

eliminating quantifiers is often beneficial

HOL4’s simplifier uses the unwind library

the unwind library can handle simple examples

Unwind Library Example

∀x y . P(x , y) ∧ (x = c) =⇒ Q(x) ←→

∀y . P(c , y) =⇒ Q(c)

the unwind library is fast and often useful

however, it is restricted to equality and certain patterns

Unwind Library Failing Example

∀x . (∃y . P(x , y) ∧ (x = c)) =⇒ Q(x)

Quantifier Heuristics Library

this talk presents the Quantifier Heuristics Library

it can handle more complicated terms

automatically uses matching as well as equality

uses information about datatypes

allows partial instantiations

is user extendable

allows guessing without proof

Quantifier Heuristics Library Examples

Quantifier Heuristics Library Examples

∀x . (∃y . P(x , y) ∧ (x = c)) =⇒ Q(x) ↔ (∃y . P(c , y)) =⇒ Q(c)

∃x . P(f (x)) ∧ (f (x) = f (c)) ↔ P(f (c))

∃x . P(x) ∧
(

(c1, x) = c2

)

↔ P(SND c2) ∧
(c1 = FST c2)

∀x . IS SOME (x) =⇒ P(x) ↔ ∀x x . P(SOME (x x))

∀x . x 6= [] =⇒ P(x) ↔ ∀x t x h. P(x h :: x t)



General Idea

Given a term ∃x . P(x) one is interested in finding an
instantiation i such that ∃x . P(x)⇔ ∃fv . P(i(fv)) holds.

Similarly, given ∀x . P(x) one is interested in finding i such
that ∀x . P(x)⇔ ∀fv . P(i(fv)) holds.

This leads to the following definitions of guesses:

GUESS EXISTS (λfv . i(fv)) (λx . P(x))
def
=

∃x . P(x)⇔ ∃fv . P(i(fv))

GUESS FORALL (λfv . i(fv)) (λx . P(x))
def
=

∀x . P(x)⇔ ∀fv . P(i(fv))

Idea: construct guesses bottom up

Stronger Guesses I

Problem: GUESS EXISTS and GUESS FORALL do not
behave well for bottom up analysis

they don’t carry enough information / they are too weak

let’s introduce stronger guesses for existential quantification

i is chosen, because it satisfies P:

GUESS TRUE (λfv . i(fv)) (λx . P(x))
def
= ∀fv . P(i(fv))

i is chosen, because all other instantiations do not satisfy P:

GUESS EXISTS STRONG (λfv . i(fv)) (λx . P(x))
def
=

∀x . P(x) =⇒ ∃fv . x = i(fv)

Stronger Guesses II

GUESS TRUE and GUESS EXISTS STRONG behave nicely

GUESS TRUE behaves nicely with disjunctions

GUESS TRUE ifv (λx . P(x)) =⇒
GUESS TRUE ifv (λx . P(x) ∨ Q(x))

GUESS EXISTS STRONG behaves nicely with conjunctions

GUESS EXISTS STRONG ifv (λx . P(x)) =⇒
GUESS EXISTS STRONG ifv (λx . P(x) ∧ Q(x))

other, more complicated rules exists as well

Stronger Guesses III

Guesses dual to GUESS TRUE and
GUESS EXISTS STRONG are introduced for universal
quantification

i is chosen, because it does not satisfy P:

GUESS FALSE (λfv . i(fv)) (λx . P(x))
def
= ∀fv . ¬(P(i(fv)))

i is chosen, because all other instantiations satisfy P:

GUESS FORALL STRONG (λfv . i(fv)) (λx . P(x))
def
=

∀x . ¬P(x) =⇒ ∃fv . x = i(fv)



Hierarchy of Guesses

GUESS TRUE
dual
←→ GUESS FALSE

⇓ ⇓

GUESS EXISTS
dual
←→ GUESS FORALL

⇑ ⇑

GUESS EXISTS STRONG
dual
←→ GUESS FORALL STRONG

Selected Inference Rules

GUESS EXISTS ifv (λx . P(x)) ⇐⇒

GUESS FORALL ifv (λx . ¬P(x))

GUESS FALSE ifv (λx . P(x)) =⇒
GUESS TRUE ifv (λx . P(x)⇒ Q(x))

GUESS FORALL ifv (λx . P(x)) =⇒
GUESS FORALL ifv (λx . P(x) ∨ q)

GUESS FALSE ifv (λx . P(x)) ∧
GUESS FALSE ifv (λx . Q(x)) =⇒
GUESS FALSE ifv (λx . P(x) ∨ Q(x))

∀y . GUESS FORALL (λfv . i(fv , y)) (λx . P(x , y)) =⇒
GUESS FORALL (λ(fv , y). i(fv , y)) (λx . ∀y . P(x , y))

Base Case: Equation

equations allow the following guesses

GUESS TRUE (λfv . i) (λx . x = i)
GUESS EXISTS STRONG (λfv . i) (λx . x = i)

using matching, one also gets

P(i) = Q(i) =⇒
GUESS TRUE (λfv . i) (λx . P(x) = Q(x))

one can also use disequations

∀fv . P(i(fv)) 6= Q(i(fv)) =⇒
GUESS FALSE (λfv . i(fv)) (λx . P(x) = Q(x))

Base Case: Datatype Cases

Many datatypes like lists or options consist of exactly two
cases. Such case theorems can be used as follows:

(

∀x . x = c1 ∨ ∃fv . x = c2(fv)
)

=⇒
GUESS FORALL STRONG (λfv . c2(fv)) (λx . x = c1)

Types like pairs only allow a single form:

(

∀x . ∃fv . x = c(fv)
)

=⇒
GUESS FORALL STRONG (λfv . c(fv)) (λx . P(x))

(

∀x . ∃fv . x = c(fv)
)

=⇒
GUESS EXISTS STRONG (λfv . c(fv)) (λx . P(x))



Overview

the ideas described so far are implemented by
quantHeuristicsLib

the core of this framework is a bottom-up search for guesses

quantifier reordering and minimising of variable occurrences
aid the search

guesses are used to instantiate existential, universal and
unique existential quantification

the main tools of quantHeuristicsLib are

QUANT INSTANTIATE CONV

QUANT INSTANTIATE TAC

ASM QUANT INSTANTIATE TAC

QUANT INST ss

standard Boolean operations and equations are built in

a list of quantifier heuristics parameters (qp) can be used for
extensions

Quantifier Heuristic Parameters

quantifier heuristic parameters extend the search for guesses

usually they contain information about special predicates or
datatypes

type quant_param =

{distinct_thms : thm list,

cases_thms : thm list,

inference_thms : thm list,

rewrite_thms : thm list,

convs : conv list,

filter : (term -> term -> bool) list,

heuristics : ... list,

top_heuristics : ... list,

final_rewrite_thms : thm list};

Predefined QPs

quantHeuristicsLib defines the following QPs

TypeBase qp

stateful qp

get qp for types

quantHeuristicsArgsLib defines QPs for common
datatypes

option qp

list qp

num qp

pair default qp

record default qp

all these are combined in std qp

Unjustified Guesses

so far, all guesses are justified by theorems

unjustified guesses are supported as well

unjustified guesses result in implications

∀x . P(x) =⇒ ∀fv . P(i(fv))

∃fv . P(i(fv)) =⇒ ∃x . P(x)

sometimes these implications are sufficient

consequence conversions are used to apply these implications
at subpositions

QUANT INST CONV and QUANT INST TAC allow to instantiate
quantifiers at subpositions with user-provided values



Conclusion

the quantifier heuristics library is powerful

it is easy to use

easily extendable by adding theorems

details can be customised using user-defined heuristics written
in ML

however, slower than unwind library

Examples

∃x . if b(x) then ((x = 2) ∧ Q1(x)) else (Q2(x) ∧ (x = 2))↔
if b(2) then Q1(2) else Q2(2)

∃!x . (x = 2) ∧ Q(x) ↔ Q(2)

∃x . P(f (x)) ∧ (f (x) = f (c)) ↔ P(f (c))

∃x . P(x) ∧
(

(c1, x) = c2

)

↔ P(SND c2) ∧ (c1 = FST c2)

∃p. (x = FST (p)) ∧ Q(p) ↔ ∃p2. Q((x , p2))

∀x . (x 6= 0) =⇒ P(x) ↔ ∀x n. P(SUC (x n))

∀x . (x = 7) ∧ P(x) ↔ F

∃x . (f (x) = f (c)) ∨ P(x) ↔ T


