Separation Logic

A formalisation of Smallfoot in HOL

Thomas Tuerk

19th August 2009

• Separation logic is an extension of Hoare Logic

- successfully used to reason about programs using pointers
- allows local reasoning, scales nicely
- there are some implementations
 - Smallfoot (Calcagno, Berdine, O'Hearn)
 - Slayer (MSR, B. Cook, J. Berdine et al.)
 - Space Invader
 - ۰...
- there are formalisation in theorem provers
 - Concurrent C-Minor Project, Coq (Appel et al.)
 - Practical Tactics for Separation Logic (McCreight)
 - *Types, Bytes, and Separation Logic*, Isabelle/HOL (Tuch, Klein, Norrish)

Motivation

Outline

- there are a lot of slightly different separation logics
- all tools / formalisations I know of are designed for one specific programming language
- in contrast, I developed a general separation logic framework
 - concentrate on the essence of separation logic
 - high level of abstraction
 - this leads to simple definitions and proofs
 - high level of reuse by instantiation to different settings
- this framework is used to build a tool similar to Smallfoot

• Abstract Separation Logic

- the core of the framework
- contains an abstract programming language and an abstract specification language
- Holfoot, a formalisation of Smallfoot
 - instantiates the framework
 - parser for Smallfoot example files
 - completely automatic verification of Smallfoot examples
 - interactive proofs are possible as well
 - most features of Smallfoot are supported
 - additionally: reasoning about data content
 - thus: reasoning about fully-functional specifications

Abstract Separation Logic

Introduction to Abstract Separation Logic

- abstract separation logic is an abstract version
- introduced by Calcagno, O'Hearn and Yang in *Local Action* and Abstract Separation Logic
- abstraction helps to concentrate on the essential part
- embedding in a theorem prover becomes easier
- can be instantiated to different variants of separation logic
- therefore, it is a good basis for a separation logic framework

Separation Logic on Heaps	Abstract Separation Logic
heaps	abstract states
${ \bullet }$ disjoint union of heaps ${ \boxplus }$	 abstract separation combinator o
 <i>h</i>₁, <i>h</i>₂ have disjoint domains 	• $s_1 \circ s_2$ is defined
• $h \models P_1 * P_2$ iff	• $s \models P_1 * P_2$ iff
$\exists h_1, h_2. \; (h=h_1 \uplus h_2) \; \land$	$\exists s_1, s_2. \ (s = s_1 \circ s_2) \ \land$
$h_1 \models P_1 \land h_2 \models P_2$	$s_1 \models P_1 \land s_2 \models P_2$

Abstract Specification Logic

Hoare Triples and Actions

- a **separation combinator** \circ is a partially defined function such that:
 - • is **associative**

$$\forall x \ y \ z. \ (x \circ y) \circ z = x \circ (y \circ z)$$

- • is commutative
- $\forall x y. x \circ y = y \circ x$

- $\forall x \ y \ z. \ (x \circ y = x \circ z) \Rightarrow y = z$
- forall elements there is a **neutral element** $\forall x. \exists u_x. u_x \circ x = x$
- ${\, \bullet \,}$ the usual separation logic operators are defined using ${\, \circ \,}$
- predicates are sets of states

- consider partial correctness of nondeterministic programs
- elementary construct of programs are *local actions*
- given a state *s* an **action** can
 - fail, i.e. return a special state \top ,
 - succeed, i.e. return a non-empty set of successor states,
 - o diverge, i.e. return Ø.
- ${\, \bullet \,}$ thus, actions are functions from states to \top or a set of states
- Hoare Triples are defined as usual:

$$\{P\} ext{ action } \{Q\} \iff egin{array}{ll} orall s. \ s \models P \ \Rightarrow ext{ action}(s)
eq op \land \ \forall t \in ext{ action}(s). \ t \models Q \end{array}$$

Programs

- frame rule is essential for separation logic
- it's important for local reasoning
- it does not hold for arbitrary actions
- actions that respect the frame rule are called **local**
- just local actions will be considered in the following

- programs consist of local actions
- there are
 - consecutive execution
 - conditional execution
 - loops
 - mutual recursive procedures
 - parallelism
 - semaphores
 - nondeterministic choice
- inference rules are proved for these programs
- tool support exists

Smallfoot

 "Smallfoot is an automatic verification tool which checks separation logic specifications of concurrent programs which manipulate dynamically-allocated recursive data structures." (Smallfoot documentation)

developed by

- Cristiano Calcagno
- Josh Berdine
- Peter O'Hearn
- the framework has been instantiated to build a HOL-version of Smallfoot, called **Holfoot**

first step

Instantiation

- add a stack with explicit read/write permissions
- this uses ideas from *Variables as Resource in Hoare Logics* by Parkinson, Bornat and Calcagno
- this abstract stack is sufficient for
 - pure expressions
 - assignments
 - Iocal variables
 - call-by-value and call-by-reference arguments

```
۰...
```

- second step
 - add a heap similar to the one used by Smallfoot
 - this allows
 - allocation / deallocation
 - heap lookups and assignments
 - predicates for lists, trees

```
۰...
```

Examples I

mergesort.sf

<pre>split(r;p) [list(p)] { local t1,t2; if(p == NULL) r = NULL; else { t1 = p->tl; } }</pre>	<pre>merge(r;p,q) [list(p) * list(q)] { } [list(r)]</pre>
<pre>if (t1 == NULL) { r = NULL; } else { t2 = t1->t1; split(r;t2); p->t1 = t2; t1->t1 = r; r = t1; }</pre>	<pre>mergesort(r;p) [list(p)] { local q,q1,p1; if(p == NULL) r = p; else { split(q;p); mergesort(q1;q); mergesort(p1;p); merge(r;p1,q1); } </pre>
} [list(p) * list(r)]	} [list(r)]

Holfoot can verify such specifications completely automatically!

Examples III

Examples II

- there is a parser for such Smallfoot specification
- Smallfoot comes with a collection of examples, most of which can be verified completely automatically
 - list reversal
 - list filtering
 - list appending
 - parallel mergesort
 - ۵ ...

mergesort.dsf

• more examples can be found at

http://heap-of-problems.org

• in addition to Smallfoot, there is support for data content

Examples III

mergesort.	dsf
------------	-----

```
split(r;p) [data_list(p,data)] { ...
} [data_list(p,_pdata) * data_list(r,_rdata) *
   ''PERM (_pdata ++ _rdata) data'']
merge(r;p,q) [data_list(p,pdata) * data_list(q,qdata) *
              ''(SORTED $<= pdata) /\ (SORTED $<= qdata)''] { ...</pre>
} [data_list(r,_rdata) * ''(SORTED $<= _rdata) /\</pre>
   (PERM (pdata ++ qdata) _rdata)'']
mergesort(r;p) [data_list(p,data)] { ...
```

} [data_list(r,_rdata) * ''(SORTED \$<= _rdata) /\ (PERM data _rdata)'']</pre>

split(r;p) [data_list(p,data)] { ... } [exists pdata, rdata. data_list(p,pdata) * data_list(r,rdata) * ''PERM (pdata ++ rdata) data''] merge(r;p,q) [data_list(p,pdata) * data_list(q,qdata) * ''(NUM_SORTED pdata) /\ (NUM_SORTED qdata)''] { ... } [exists rdata. data_list(r,rdata) * ''(NUM_SORTED rdata) /\ (PERM (pdata ++ qdata) rdata)'']

```
mergesort(r;p) [data_list(p,data)] { ...
} [exists rdata. data_list(r,rdata) *
   ''(NUM_SORTED rdata) /\ (PERM data rdata)'']
```

Examples IIII

Conclusion and Future Work

val thm = smallfoot_verbose_prove(mergesort-specification-filename, SMALLFOOT_VC_TAC THEN ASM_SIMP_TAC (arith_ss++PERM_ss) [SORTED_EQ, SORTED_DEF, transitive_def] THEN REPEAT STRIP_TAC THEN (IMP_RES_TAC PERM_MEM_EQ THEN FULL_SIMP_TAC list_ss [] THEN RES_TAC THEN ASM_SIMP_TAC arith_ss []));

Conclusion

- I have built a general separation logic framework
- the power and flexibility of the framework is demonstrated by implementing a HOL version of Smallfoot
- Holfoot combines the power of HOL with the automation of Smallfoot
- this combination allows reasoning about data
- Holfoot can verify fully-functional specifications

Future Work

- finish a general clean-up
- extend Holfoot to reason about pointer arithmetic
- verify programs using more complicated data structures