
A formalisation of Smallfoot in HOL

Thomas Tuerk

19th August 2009

Separation Logic

Separation logic is an extension of Hoare Logic

successfully used to reason about programs using pointers

allows local reasoning, scales nicely

there are some implementations

Smallfoot (Calcagno, Berdine, O’Hearn)
Slayer (MSR, B. Cook, J. Berdine et al.)
Space Invader
...

there are formalisation in theorem provers

Concurrent C-Minor Project, Coq (Appel et al.)
Practical Tactics for Separation Logic (McCreight)
Types, Bytes, and Separation Logic, Isabelle/HOL (Tuch,
Klein, Norrish)

Motivation

there are a lot of slightly different separation logics

all tools / formalisations I know of are designed for one
specific programming language

in contrast, I developed a general separation logic
framework

concentrate on the essence of separation logic
high level of abstraction
this leads to simple definitions and proofs
high level of reuse by instantiation to different settings

this framework is used to build a tool similar to Smallfoot

Outline

Abstract Separation Logic

the core of the framework
contains an abstract programming language and an abstract
specification language

Holfoot, a formalisation of Smallfoot

instantiates the framework
parser for Smallfoot example files
completely automatic verification of Smallfoot examples
interactive proofs are possible as well
most features of Smallfoot are supported
additionally: reasoning about data content
thus: reasoning about fully-functional specifications

Abstract Separation Logic

abstract separation logic is an abstract version

introduced by Calcagno, O’Hearn and Yang in Local Action

and Abstract Separation Logic

abstraction helps to concentrate on the essential part

embedding in a theorem prover becomes easier

can be instantiated to different variants of separation logic

therefore, it is a good basis for a separation logic framework

Introduction to Abstract Separation Logic

Separation Logic on Heaps

heaps

disjoint union of heaps ⊎

h1, h2 have disjoint
domains

h |= P1 ∗ P2 iff
∃h1, h2. (h = h1 ⊎ h2) ∧
h1 |= P1 ∧ h2 |= P2

Abstract Separation Logic

abstract states

abstract separation
combinator ◦

s1 ◦ s2 is defined

s |= P1 ∗ P2 iff
∃s1, s2. (s = s1 ◦ s2) ∧
s1 |= P1 ∧ s2 |= P2

Abstract Specification Logic

a separation combinator ◦ is a partially defined function
such that:

◦ is associative

∀x y z . (x ◦ y) ◦ z = x ◦ (y ◦ z)
◦ is commutative

∀x y . x ◦ y = y ◦ x

◦ is cancellative

∀x y z . (x ◦ y = x ◦ z) ⇒ y = z

forall elements there is a neutral element

∀x .∃ux . ux ◦ x = x

the usual separation logic operators are defined using ◦

predicates are sets of states

Hoare Triples and Actions

consider partial correctness of nondeterministic programs

elementary construct of programs are local actions

given a state s an action can

fail, i. e. return a special state ⊤,
succeed, i. e. return a non-empty set of successor states,
diverge, i. e. return ∅.

thus, actions are functions from states to ⊤ or a set of states

Hoare Triples are defined as usual:

{P} action {Q} ⇐⇒
∀s. s |= P ⇒ action(s) 6= ⊤∧

∀t ∈ action(s). t |= Q

Local Actions / Frame Rule

Frame Rule

{P} action {Q}

{P * R} action {Q * R}

frame rule is essential for separation logic

it’s important for local reasoning

it does not hold for arbitrary actions

actions that respect the frame rule are called local

just local actions will be considered in the following

Programs

programs consist of local actions

there are

consecutive execution
conditional execution
loops
mutual recursive procedures
parallelism
semaphores
nondeterministic choice

inference rules are proved for these programs

tool support exists

Smallfoot

”Smallfoot is an automatic verification tool which checks
separation logic specifications of concurrent programs which
manipulate dynamically-allocated recursive data
structures.”(Smallfoot documentation)

developed by

Cristiano Calcagno
Josh Berdine
Peter O’Hearn

the framework has been instantiated to build a HOL-version
of Smallfoot, called Holfoot

Instantiation

first step

add a stack with explicit read/write permissions
this uses ideas from Variables as Resource in Hoare Logics by
Parkinson, Bornat and Calcagno
this abstract stack is sufficient for

pure expressions
assignments
local variables
call-by-value and call-by-reference arguments
...

second step

add a heap similar to the one used by Smallfoot
this allows

allocation / deallocation
heap lookups and assignments
predicates for lists, trees
...

Examples I

mergesort.sf

split(r;p) [list(p)] {

local t1,t2;

if(p == NULL) r = NULL;

else {

t1 = p->tl;

if (t1 == NULL) {

r = NULL;

} else {

t2 = t1->tl;

split(r;t2);

p->tl = t2;

t1->tl = r;

r = t1;

}

}

} [list(p) * list(r)]

merge(r;p,q)

[list(p) * list(q)] {

...

} [list(r)]

mergesort(r;p) [list(p)] {

local q,q1,p1;

if(p == NULL) r = p;

else {

split(q;p);

mergesort(q1;q);

mergesort(p1;p);

merge(r;p1,q1);

}

} [list(r)]

Holfoot can verify such specifications completely automatically!

Examples II

there is a parser for such Smallfoot specification

Smallfoot comes with a collection of examples, most of which
can be verified completely automatically

list reversal
list filtering
list appending
parallel mergesort
...

more examples can be found at
http://heap-of-problems.org

in addition to Smallfoot, there is support for data content

Examples III

mergesort.dsf

split(r;p) [data_list(p,data)] { ...

} [data_list(p,_pdata) * data_list(r,_rdata) *

‘‘PERM (_pdata ++ _rdata) data‘‘]

merge(r;p,q) [data_list(p,pdata) * data_list(q,qdata) *

‘‘(SORTED $<= pdata) /\ (SORTED $<= qdata)‘‘] { ...

} [data_list(r,_rdata) * ‘‘(SORTED $<= _rdata) /\

(PERM (pdata ++ qdata) _rdata)‘‘]

mergesort(r;p) [data_list(p,data)] { ...

} [data_list(r,_rdata) * ‘‘(SORTED $<= _rdata) /\ (PERM data _rdata)‘‘]

Examples III

mergesort.dsf

split(r;p) [data_list(p,data)] { ...

} [exists pdata, rdata. data_list(p,pdata) * data_list(r,rdata) *

‘‘PERM (pdata ++ rdata) data‘‘]

merge(r;p,q) [data_list(p,pdata) * data_list(q,qdata) *

‘‘(NUM_SORTED pdata) /\ (NUM_SORTED qdata)‘‘] { ...

} [exists rdata. data_list(r,rdata) * ‘‘(NUM_SORTED rdata) /\

(PERM (pdata ++ qdata) rdata)‘‘]

mergesort(r;p) [data_list(p,data)] { ...

} [exists rdata. data_list(r,rdata) *

‘‘(NUM_SORTED rdata) /\ (PERM data rdata)‘‘]

http://heap-of-problems.org

Examples IIII

val thm = smallfoot_verbose_prove(mergesort-specification-filename,

SMALLFOOT_VC_TAC THEN

ASM_SIMP_TAC (arith_ss++PERM_ss)

[SORTED_EQ, SORTED_DEF, transitive_def] THEN

REPEAT STRIP_TAC THEN (

IMP_RES_TAC PERM_MEM_EQ THEN

FULL_SIMP_TAC list_ss [] THEN

RES_TAC THEN ASM_SIMP_TAC arith_ss []

));

Conclusion and Future Work

Conclusion

I have built a general separation logic framework

the power and flexibility of the framework is demonstrated by
implementing a HOL version of Smallfoot

Holfoot combines the power of HOL with the automation of
Smallfoot

this combination allows reasoning about data

Holfoot can verify fully-functional specifications

Future Work

finish a general clean-up

extend Holfoot to reason about pointer arithmetic

verify programs using more complicated data structures

	Motivation
	Abstract Separation Logic
	Holfoot
	Conclusion

