
A HOL implementation of Smallfoot

Thomas Tuerk

27th January 2008

Separation Logic

Separation logic is an extension of Hoare Logic

successfully used to reason about programs using pointers

allows local reasoning

scales nicely

there are some implementations

Smallfoot (Calcagno, Berdine, O’Hearn)
Slayer (MSR, B. Cook, J. Berdine et al.)
...

there are formalisation in theorem provers

Concurrent C-Minor Project, Coq (Appel et al.)
Types, Bytes, and Separation Logic, Isabelle/HOL (Tuch,
Klein, Norrish)

Motivation

there are a lot of slightly different separation logics

classically a state consists of stack + heap
but: how does the heap look like
read- / write-permissions for stack-variables ?
which predicates are supported?

all tools / formalisations I know of are designed for one
specific programming language

in contrast, I would like to design a general framework

keep the core as abstract as possible
this should lead to simplicity
instantiate this core to different specific programming
languages

Main questions: what’s the essence of separation logic? How
to formalise it into a theorem prover?

Work done up to this point

formalisation of Abstract Separation Logic

first case study: a tool similar to Smallfoot

combines ideas from Abstract Separation Logic, Variables as

Resource and Smallfoot
parser for Smallfoot example files
completely automatic verification
interactive proofs are possible as well
most features of Smallfoot are supported
data content is supported

Abstract Separation Logic

Abstract Separation Logic is an abstract version

introduced by Calcagno, O’Hearn and Yang in Local Action

and Abstract Separation Logic

abstraction helps to concentrate on the essential part

embedding in a theorem prover becomes easier

can be instantiated to different variants of separation logic

therefore, it may be used as a basis for a separation logic
framework in HOL

Introduction to Abstract Separation Logic

Separation Logic on Heaps

heaps

disjoint union of heaps ⊎

h1, h2 have disjoint
domains

h |= P1 ∗ P2 iff
∃h1, h2. (h = h1 ⊎ h2) ∧
h1 |= P1 ∧ h2 |= P2

Abstract Separation Logic

abstract states

abstract separation
combinator ◦

s1 ◦ s2 is defined

s |= P1 ∗ P2 iff
∃s1, s2. (s = s1◦s2) ∧ s1 |=
P1 ∧ s2 |= P2

Separation Combinator

A separation combinator ◦ is a partially defined function such
that:

◦ is associative

∀x y z . (x ◦ y) ◦ z = x ◦ (y ◦ z)

◦ is commutative

∀x y . x ◦ y = y ◦ x

◦ is cancellative

∀x y z . (x ◦ y = x ◦ z) ⇒ y = z

forall elements there is a neutral element

∀x .∃ux . ux ◦ x = x

Hoare Triples and Actions

consider partial correctness

an action is a function from states to either a special failure
state ⊤ or a set of states

∅ used to model actions that diverge

{P} action {Q} iff forall states s such that s |= P the action
does not fail and t |= Q forall t ∈ action(s)

Local Actions / Frame Rule

Frame Rule

{P} action {Q}

{P * R} action {Q * R}

frame rule is essential for separation logic

it’s important for local reasoning

it does not hold for arbitrary actions

actions that respect the frame rule are called local

just local actions will be considered in the following

Programs

c for every local action c

p ; q

p + q

p*

p || q

with l do p

l.p

Notice that skip and assume c for intuitionist conditions c are
local actions.

Conditional execution and loops can be mimiced using
non-determistic choice and assume.

Smallfoot

”Smallfoot is an automatic verification tool which checks
separation logic specifications of concurrent programs which
manipulate dynamically-allocated recursive data
structures.”(Smallfoot documentation)

developed by Cristiano Calcagno, Josh Berdine, Peter O’Hearn

uses low-level imperative programming language that supports

pointers
local and global variables
dynamic memory allocation/deallocation
conditional execution, while-loops and recursive procedures
parallelism

Smallfoot II

mergesort.sf

split(r;p) [list(p)] {

local t1,t2;

if(p == NULL) r = NULL;

else {

t1 = p->tl;

if(t1 == NULL) {

r = NULL;

} else {

t2 = t1->tl;

split(r;t2);

p->tl = t2;

t1->tl = r;

r = t1;

}

}

} [list(p) * list(r)]

merge(r;p,q)

[list(p) * list(q)] {

...

} [list(r)]

mergesort(r;p) [list(p)] {

local q,q1,p1;

if(p == NULL) r = p;

else {

split(q;p);

mergesort(q1;q);

mergesort(p1;p);

merge(r;p1,q1);

}

} [list(r)]

Formalisation in HOL

implemented as an instantiation of Abstract Separation Logic

states are pairs of a heap and a stack

the heap maps locations to named arrays

the stack maps variables to value + permission

stack uses ideas from Variables as Resource (Parkinson,
Bornat, Calcagno)

Demo

Calculation of a frame - intuition

{pre}

call_function fun_pre fun_post;

prog

{post}

search frame such that

pre |= frame * fun_pre

{frame * fun_post}

prog

{post}

often the elimination of common parts of pre and fun pre is the first step in
the search

keep these common parts in context

Calculation of a frame

SMALLFOOT_PROP_IMPLIES ...

context pre fun_pre frame_prog_pred

means there is a frame such that

context * pre |= context * fun_pre * frame

frame_prog_pred frame holds

additionally, one needs to take care of read / write-permissions

Calculation of a frame

val SMALLFOOT_PROP_IMPLIES_def = Define ‘

SMALLFOOT_PROP_IMPLIES (strong_rest:bool) (wpb,rpb) wpb’

sfb_context sfb_split sfb_imp sfb_restP =

~(sfb_restP = EMPTY) ==>

?sfb_rest. sfb_restP sfb_rest /\

((smallfoot_prop___COND (wpb,rpb)

(BAG_UNION sfb_context (BAG_UNION sfb_split sfb_imp))) ==>

(!s. smallfoot_prop___PROP (wpb,rpb) (BAG_UNION sfb_split sfb_context) s ==>

(smallfoot_prop___COND (BAG_DIFF wpb wpb’,

BAG_DIFF rpb wpb’) sfb_rest /\

smallfoot_prop___PROP (wpb,rpb)

(BAG_UNION sfb_imp (BAG_UNION sfb_rest sfb_context)) s)))‘

Consequence Conversions

conversions are ML-functions that given a term t return a
theorem |- t = t eq.

consequence conversions are ML-function that gievn a
boolean term t return a theorem

|- t strong ==> t,
|- t = t eq or
|- t ==> t weak.

directed consequence conversions are consequence
conversions with an additional direction argument to decide,
whether to strengthen or weaken the input

library ConseqConv contains useful consequence conversions
and infrastructure for consequence conversions

Quantifier Instantiation Heuristics

given a term ?x. P x there are 3 reasons to instantiate x
with a concrete value i:

1 P i
2 !i’. ~(i = i’) ==> ~(P i’)
3 !i’. P i’ ==> P i

dual to these reasons there are three reasons for
all-quantification

quantHeuristicsLib is a library that supports instantiating
quantifiers based on heuristics that come up with these
guesses

Quantifier Instantiation Heuristics II

a quantifier heuristic is an ML-function that given a term P x

with a free variable x returns a list a guesses on how to
instantiate x

a guess consists of

the instantiation i

a list of free variables in i that should remain quantified
one of the 6 reasons or an I-just-feel-like-it reason
possibly a justification in form of a HOL-theorem

if a justification is given, equivalence can be proved

otherwise an implication is introduced

Quantifier Instantiation Heuristics III

library knows about common boolean operators

there is support for equations

informations from type-base are used automatically

all default heuristics come with a justifying theorem and are
therefore safe

user heuristics can be added very easily

	Motivation
	Abstract Separation Logic
	Smallfoot Formalisation
	Demo
	Used HOL Tools

