
Real-world formal documentation
Thomas Tuerk

Independent Scholar, Albert-Otto-Str. 8, 65611 Brechen, Germany
thomas@tuerk-brechen.de

Abstract: In recent years there have been tremendous improvements in interactive theorem proving. Nev-
ertheless, it is hardly used during development of even critical, well funded software projects. One reason is
the intrinsic difficulty of formal proofs. However, with advancements in automation and user interfaces this
reason becomes less and less important. In my opinion, nowadays preconceptions are a more severe hindrance.
As soon as terms like logic, proof or formal specification are used, even very clever, highly skilled software
engineers tend to think of some kind of black magic: way to complicated for mere mortals and while huge
gains are luring, you need to sell your soul to get them. Another reason why interactive theorem proving is
not commonly used is – in my experience – that often a large initial investment is needed and progress and
benefits are hard to measure.
I believe formal methods and in particular interactive theorem proving are vital to deal with the ever increasing
complexity of hard- and software. However, before they get more widely used, the issues discussed above need
addressing in my opinion. Therefore I started developing a tool called Advanced Documentation and Testing
Tool (ADATT). Superficially it looks like yet another functional style programming language accompanied
with a compiler and other development tools. Specifications written with ADATT can be exported to common
theorem provers for reasoning. Moreover they can be exported to common programming languages for execu-
tion. In contrast to similar tools like Lem it is also possible to write partial specifications. Users can start with
completely informal documentation in natural language, which ADATT can use to produce production quality
documents. Step by step more formal content can be added. To support common development workflows,
there should be an immediate return of invested effort and progress should be easily measurable. A special
focus is on using partial specifications for advanced testing.
In this abstract, I will present the ideas behind ADATT. The development is still in a very early stage. There
is no working prototype yet. However, I hope by presenting the ideas at an early stage it is possible to start
discussions and perhaps find collaborators.

1 Motivation

I’m an interactive theorem prover guy. I have been working
with HOL 4, Isabelle/HOL and Coq. I mainly used them to
improve trust in real-world systems. Thereby I always fol-
lowed a rather pragmatic approach. My goal was to find
bugs and increase the trustworthiness of systems. Espe-
cially when reasoning about real-world systems, there is a
non-trivial gap between the real system and the model of
the system one can reason about. To gain trust into the real
system, one needs to show that the model somehow corre-
sponds to the real system (e. g. via careful code review or
conformance testing) and additionally show some interest-
ing properties of the model.

I have been working on this kind of verification projects
both in academia and industry. Most recently, I worked in
industry and tried to harden a microhypervisor using the
Coq proof assistant [1]. In my experience, most problems
are found while building a formal model of the computer
system. This is due to the fact that building a formal model
usually involves a detailed review of the existing system
and requires the clarification of ambiguous and missing in-
formation. In addition, many bugs are found while proving
simple properties about isolated parts the model, as this re-
veals simple implementation mistakes. Proving deep prop-
erties tends to reveal comparably few bugs. These are usu-

ally bugs in the design of the whole system.
This means that building a formal model is a very worth-

while activity in itself for hunting bugs. However, once you
have a formal model – especially if it is executable – it can
be easily used for powerful testing, documentation and au-
tomated formal methods. Even better, I believe that no for-
mal methods experts are needed to develop basic formal
models. If you present formal specifications as high level
programs, domain experts are in my experience willing to
read and even write formal specifications. This is especially
true, if writing such a formal specification has an immediate
benefit.

If the development of formal models can partly be done
by domain experts while developing and testing a system,
the costs for using interactive theorem proving can be low-
ered. The communication between domain and formal
method experts is simplified and the (partial) formal model
is a very good basis for formal method experts to extend and
reason about. For enabling this vision of having domain ex-
perts develop (partial) formal models, good tool support is
essential.

2 Lem

The best tool I know for the purposes stated above is
Lem [2]. “Lem is a lightweight tool for writing, managing,



and publishing large scale semantic definitions”1. It has the
look and feel of a functional programming language. Large
subsets of Lem specifications can be translated to OCaml
as well as definitions for HOL 4, Isabelle/HOL and Coq.

Even before working on Lem, I was fascinated on how
much effect the form of presentation of formal methods
can have. Programmers are trained to write down precise
definitions (that’s what a computer program is after all).
However, if you ask them to write down a specification,
the average programmer refuses. It was a revelation to me
to see how VeriFast manages to get programmers to specify
loops by disguising loop-invariants as programs. This in-
sight grew deeper, while working for Peter Sewell on Lem.

I’m a strong believer in the ideas of Lem. It is vital to
bring domain experts and formal verification experts closer
together. Moreover, providing an environment that looks
like a programming language and supports the normal tools
of a programming language is a good choice. It is im-
portant to be able to produce human-readable output, exe-
cutable code and formal specifications from the same input.
Even using a functional instead of an imperative language
is (while not familiar to many domain experts) a very sen-
sible compromise, since it is comparably straightforward to
translate to logic. However Lem does not go far enough
in my opinion. Lem is a good tool, if you want to write
a complete executable formal specification. It is, however,
not suitable to write partial specifications or informal docu-
mentation. Moreover, Lem has limited capabilities for test-
ing and measuring progress.

3 ADATT

For these reasons I started developing a tool called Ad-
vanced Documentation and Testing Tool (ADATT). It is in-
spired by Lem, but has a different focus. Similar to Lem,
ADATT allows writing executable specifications that re-
semble functional programs and can be translated to inter-
active theorem provers. However, as the name suggests,
ADATT focuses on documentation and testing and consid-
ers interactive theorem proving as an extra.

Domain experts should be able to use ADATT to write
natural language documentation without any formal con-
tent. This should not be much more cumbersome than us-
ing other tools. One should be able to produce production-
quality documents. Formal content can be added step by
step. There should be an immediate benefit for adding for-
mal content. If one – for example – formally declares a
function or type, the spelling of it should be checked in the
documentation. If you add a type signature, typechecking
could take place in the natural language definition.

It is vital that ADATT can deal with partial specifica-
tions. Partially is supported in multiple ways. Even just
declaring a function together with a type signature is a par-
tial specification. You can then add single test cases. These
test cases should be easily executable against a real imple-
mentation. ADATT aims to provide good support for con-

1citation from http://www.cl.cam.ac.uk/˜pes20/lem

formance testing by e. g. providing special code generation.
ADATT will support code contracts as well as families of
executable tests. There is a separate syntactic construct for
adding non-executable properties of the function. These
cannot be used for testing and are instead intended to be
checked by interactive theorem proving. One or more of
such non-executable properties can be used as an axiomatic
specification for theorem prover backends.

Ideally, however, we would like to end up with exe-
cutable specifications. I can well imagine that different
parts of the specifications are written by different people
in different files. A programmer might start with natural
language documentation, a function declaration and a few
simple test cases. A test engineer might then add code con-
tracts, some more tests and perhaps even a non-executable
property. Finally, a formal methods expert might provide
an executable specification and add non-executable proper-
ties. Different formal method experts might then use theo-
rem provers of their choice to reason about the model, while
ADATT keeps track of progress and links developments in
various provers.

It is vital to provide some easy measurements of progress
in order to integrate ADATT with existing software devel-
opment processes. This means providing good reports and
statistics. (How many functions are declared / specified /
executable? Which tests were run when? ...) More inter-
estingly, however, ADATT should be able to measure code-
coverage.

4 Conclusion

ADATT is still in its very early stages. There is not even a
prototype yet. There is a lot of work still ahead. This is in
particular true, since ADATT needs a good user-interface,
i. e. integration in commonly used IDEs. However, impor-
tant design decision have already been made and implemen-
tation is well underway. Therefore, I would already value
some comments.

References

[1] Hanno Becker, Juan Manuel Crespo, Jacek Galow-
icz, Ulrich Hensel, Yoichi Hirai, César Kunz, Keiko
Nakata, Jorge Luis Sacchini, Hendrik Tews, and
Thomas Tuerk. Combining Mechanized Proofs and
Model-Based Testing in the Formal Analysis of a Hy-
pervisor, pages 69–84. Springer International Publish-
ing, Cham, 2016.

[2] Dominic P. Mulligan, Scott Owens, Kathryn E. Gray,
Tom Ridge, and Peter Sewell. Lem: Reusable engi-
neering of real-world semantics. In Proceedings of
the 19th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’14, pages 175–188,
New York, NY, USA, 2014. ACM.

http://www.cl.cam.ac.uk/~pes20/lem

	Motivation
	Lem
	ADATT
	Conclusion

