
A fully-expansive HOL implementation of

Smallfoot

Thomas Tuerk

2nd September 2008

Overview

1 Motivation

2 Abstract Separation Logic

3 Smallfoot

4 HOL implementation

Separation Logic

Separation logic is an extension of Hoare Logic

successfully used to reason about programs using pointers

allows local reasoning

scales nicely

there are some implementations

Smallfoot (Calcagno, Berdine, O’Hearn)
Slayer (MSR, B. Cook, J. Berdine et al.)
...

there as formalisation in theorem provers

Concurrent C-Minor Project, Coq (Appel et al.)
Types, Bytes, and Separation Logic, Isabelle/HOL (Tuch,
Klein, Norrish)

Motivation

there are a lot of slightly different separation logics

classically a state constists of stack + heap
but: how does the heap look like
read- / write-permissions for stack-variables ?
which predicates are supported?

all tools / formalisations I know of are designed for one
specific programming language

in contrast, I would like to design a general framework

keep the core as abstract as possible
this should lead to simplicity
instantiate this core to different specific programming
languages

Main questions: what’s the essence of separation logic? How
to formalise it into a theorem prover?

Work done up to this point

formalisation of Abstract Separation Logic

first case study: a tool similar to Smallfoot

combines ideas from Abstract Separation Logic, Variables as

Resource and Smallfoot
parser for Smallfoot example files
completely automatic verification
interactive proofs are possible as well
most features of Smallfoot are supported

Abstract Separation Logic

abstract separation logic is an abstract version

introduced by Calcagno, O’Hearn and Yang in Local Action

and Abstract Separation Logic

abstraction helps to concentrate on the essential part

embedding in a theorem prover becomes easier

can be instantiated to different variants of separation logic

therefore, it may be used as a basis for a separation logic
framework in HOL

Introduction to Abstract Separation Logic

Separation Logic on Heaps

heaps

disjoint union of heaps ⊎

h1, h2 have disjoint
domains

h |= P1 ∗ P2 iff
∃h1, h2. (h = h1 ⊎ h2) ∧
h1 |= P1 ∧ h2 |= P2

Abstract Separation Logic

abstract states

abstract separation
combinator ◦

s1 ◦ s2 is defined

s |= P1 ∗ P2 iff
∃s1, s2. (s = s1◦s2) ∧ s1 |=
P1 ∧ s2 |= P2

Separation Combinator

A separation combinator ◦ is a partially defined function such
that:

◦ is associative

∀x y z . (x ◦ y) ◦ z = x ◦ (y ◦ z)

◦ is commutative

∀x y . x ◦ y = y ◦ x

◦ is cancellative

∀x y z . (x ◦ y = x ◦ z) ⇒ y = z

forall elements there is a neutral element

∀x .∃ux . ux ◦ x = x

Local Actions / Frame Rule

partial correctness considered

local reasoning essential

Frame Rule

{P} action {Q}

{P * R} action {Q * R}

actions that respect the frame rule are called local

just local actions will be considered in the following

Programs

c for every local action c

p ; q

p + q

p*

p || q

with l do p

l.p

Notice that skip and assume c for intuitionistic conditions c are
local actions.

Conditional execution and loops can be mimiced using
non-determistic choice and assume.

Smallfoot

”Smallfoot is an automatic verification tool which checks
separation logic specifications of concurrent programs which
manipulate dynamically-allocated recursive data structures.”
(Smallfoot documentation)

developed by

Cristiano Calcagno
Josh Berdine
Peter O’Hearn

Smallfoot II

mergesort.sf

split(r;p) [list(p)] {

local t1,t2;

if(p == NULL) r = NULL;

else {

t1 = p->tl;

if(t1 == NULL) {

r = NULL;

} else {

t2 = t1->tl;

split(r;t2);

p->tl = t2;

t1->tl = r;

r = t1;

}

}

} [list(p) * list(r)]

merge(r;p,q)

[list(p) * list(q)] {

...

} [list(r)]

mergesort(r;p) [list(p)] {

local q,q1,p1;

if(p == NULL) r = p;

else {

split(q;p);

mergesort(q1;q);

mergesort(p1;p);

merge(r;p1,q1);

}

} [list(r)]

HOL implementation of Smallfoot

formalisation of Abstract Separation Logic

(Calcagno, O’Hearn, Yang; LICS ’07)

first case study: a tool similar to Smallfoot

combines ideas from Abstract Separation Logic, Variables as

Resource and Smallfoot
parser for Smallfoot example files
completely automatic verification
interactive proofs are possible as well
most features of Smallfoot are supported

Demo mergesort.sf

Demo of Smallfoot implementation.

Comparison mergesort.sf - split

split(r; p_const)

[smallfoot_prop_input_ap_distinct

({r},{}) [r] list(tl; p_const)] {

local (p = p_const), t1, t2;

if p == NULL then {

r = NULL

} else {

t1 = p->tl;

if t1 == NULL then {

r = NULL

} else {

t2 = t1->tl;

split(r; t2);

p->tl = t2;

t1->tl = r;

r = t1;

} }

} [smallfoot_prop_input_ap_distinct

({r},{}) [r] list(tl; p_const) *

list(tl; r)]

split(r;p)

[list(p)] {

local t1,t2;

if (p == NULL) {

r = NULL;

} else {

t1 = p->tl;

if (t1 == NULL) {

r = NULL;

} else {

t2 = t1->tl;

split(r;t2);

p->tl = t2;

t1->tl = r;

r = t1;

} }

} [list(p) * list(r)]

Demo II

Demo of Smallfoot implementation.

Future Work

extend the Smallfoot example to interactive verification /
more interesting specifications

modify the underlying abstract framework

try other case studies like verification of assembler code

	Motivation
	Abstract Separation Logic
	Smallfoot
	HOL implementation

