
PSL in HolCheck

Thomas Tuerk

February 1st, 2006

Overview

1 Motivation
HolCheck
PSL

Integration of PSL into HolCheck

2 Used Formalisms
Linear Temporal Logic (LTL)
Reset Linear Temporal Logic (RLTL)
Accellera’s Property Specification Language (PSL)
Generalised Büchi Automata

3 Translation of a subset of PSL to Generalised Büchi Automata

4 Work

5 Conclusions

HolCheck

symbolic model checker embedded in the HOL theorem prover

all steps of the algorithm are proved in HOL

based on HolBdd developed by Mike Gordon

developed at the ARG, mainly by Hasan Amjad

supports µ-calculus and CTL

PSL

many different formalisms for specifications exists like

LTL

CTL

CTL∗

ω-automata

monadic second order logics

µ-calculus

Accellera’s Property Specification Language (PSL) is a
standardised industrial-strength property specification
language

Version 1.0: April 2003
Version 1.1: June 2004

PSL is quite similar to ForSpec Temporal Logic (FTL)
presented by Moshe Vardi last week

Integration of PSL into HolCheck

in my diploma thesis I formally validated a translation of a
significant subset of PSL to generalised Büchi automata

the emptiness problem of generalised Büchi automata remains

this problem can be easily translated to a µ-calculus formula

HolCheck is able to handle µ-calculus formulas

PSL RLTL LTL

CTL

Büchi-automata

µ− calculus

Linear Temporal Logic (LTL)

introduced by Pnueli in 1977

essentially consists of propositional logic enriched with
temporal operators X and U

for w : N → 2P the semantics is given by:

the usual semantics of propositional operators
w |= p iff p ∈ w0

w |= Xϕ iff w1.. |= ϕ

w |= ϕUψ iff ϕ holds on w until ψ holds and ψ eventually
holds

additional operators are added as syntactic sugar, e. g. G, F

Linear Temporal Logic (LTL) II

Example

The LTL formula
G

(

req → F ack
)

specifies, that every request (req) has to be followed by an
acknowledge (ack).

Reset Linear Temporal Logic (RLTL)

RLTL is an extension of LTL with reset operators

these operators are used to model hardware resets

introduced by Armoni, Bustan, Kupferman and Vardi (TACAS
2003):

abort in PSL 1.0 leads to non-elementary blowup
⇒ abort changed according to RLTL in PSL 1.1

RLTL is as expressive as LTL

translation of RLTL to LTL known

unsurprisingly a significant subset of PSL 1.1 can be
translated to RLTL

Reset Linear Temporal Logic (RLTL) II

Example

G
(

(

req → F ack
)

ACCEPT cancel
)

specifies, that every request (req) has to be followed by an
acknowledge (ack), unless a cancellation (cancel) occurs.

Accellera’s Property Specification Language (PSL)

PSL is an industrial strength property specification language

PSL is based on IBM’s sugar and Intel’s FTL language

PSL consists of different layers and different flavours

here only the temporal layer is considered

the temporal layer consists of

the Foundation Language

the Optional Branching Extension, which is essentially CTL

Accellera’s Property Specification Language (PSL) II

the foundation language (FL) consists of

linear temporal logic operators

reset operators

clocking operators
regular expressions (SEREs)
a lot of syntactic sugar

the semantics of FL consider finite and infinite paths

we consider a significant subset of FL called SUFL, that
consists of

linear temporal logic operators
reset operators

we consider only infinite paths

i. e. we consider FL without regular expressions for model

checking

Generalised Büchi Automata

generalised Büchi automata are finite automata on infinite
words

as the input is infinite, there is no last state of a run

thus, the acceptance condition has to be defined somehow
different

a input is accepted by a generalised Büchi automaton, iff
there is a run that visits some sets of states infinitely often

these sets of states are called fairness constraints

Generalised Büchi Automata II

Example

s0

s1

s2

b

a

c

a

Initial state: s0
Fairness Constraints: {s1}, {s2}

Then the given generalised Büchi
automaton accepts all runs that
visit s1 and s2 infinitely often

Translation of SUFL to RLTL

translation quite easy: replace every PSL operator with the
corresponding RLTL operator

however, correctness proof tricky

the semantics of SUFL is given using special states ⊤, ⊥

in contrast RLTL uses acceptance / rejection conditions

these concepts have to be mapped to each other

a lot of technical problems occur

Translation of RLTL to Generalised Büchi Automata

Translation of RLTL to LTL

translation given by Armoni, Bustan, Kupferman and Vardi

consists of simple rewrite rules

correctness proof straightforward

Translation of LTL to Generalised Büchi Automata

translation is well known

we use a symbolic representation of ω-automata

translation can be done in linear time with respect to the size
of the LTL formula

Overall Model Checking Procedure

given a kripke structure M and a SUFL formula f the problem
is to check whether all paths through M satisfy f

translate ¬f to a generalised Büchi automaton A

build the product M × A of M and A

check whether there exists a fair path through M × A

this emptiness check can be expressed in µ-calculus or in
FairCTL

use HolCheck to evaluate this µ-calculus formula

Work done in HOL

we used Mike Gordon’s deep embedding of PSL

we deeply embedded:

RLTL

LTL

automaton formulas, a symbolic representation of
nondeterministic ω-automata

we formally verified:

the translation of PSL to RLTL

a translation of RLTL to LTL

a translations of LTL to automaton formulas

Current Work

refactoring

optimising the translation of LTL to automaton formulas

translation of generalised Büchi automata to µ-calculus

implementing interfaces to HolCheck

Possible Future Work

adding FairCTL, CTL∗ and ω-automata as input languages to
HolCheck

extending the subset of PSL to full FL

we are already able to translate LTL safety properties to
alternation free µ-calculus

add a specialised translation of LTL liveness properties to
alternation free µ-calculus

. . .

Conclusions

PSL is an important specification language

SUFL is a significant subset of PSL

we translated SUFL to RLTL and further to LTL and
generalised Büchi automata

we deeply embedded LTL, RLTL and automaton formulas

we will soon be able to use SUFL and LTL as input languages
for HolCheck

	Overview
	Motivation
	HolCheck
	PSL
	Integration of PSL into HolCheck

	Used Formalisms
	Linear Temporal Logic (LTL)
	Reset Linear Temporal Logic (RLTL)
	Accellera's Property Specification Language (PSL)
	Generalised Büchi Automata

	Translation of a subset of PSL to Generalised Büchi Automata
	Translation of SUFL to RLTL
	Translation of RLTL to Generalised Büchi Automata

	Work
	Work done in HOL
	Current Work
	Possible Future Work

	Conclusions

