
Applying Data Refinement for Monadic
Programs to Hopcroft’s Algorithm

Peter Lammich and Thomas Tuerk

TU München, {peter.lammich,thomas.tuerk}@in.tum.de

Abstract. We provide a framework for program and data refinement in
Isabelle/HOL. It is based on a refinement calculus for monadic expres-
sions and provides tools to automate canonical tasks such as verification
condition generation. It produces executable programs, from which Is-
abelle/HOL can generate verified, efficient code in various languages,
including Standard ML, Haskell and Scala.
In order to demonstrate the practical applicability of our framework, we
present a verified implementation of Hopcroft’s algorithm for automata
minimisation.

1 Introduction

When verifying algorithms, there is a trade-off between the abstract version of
the algorithm, that captures the algorithmic ideas, and the actual implemen-
tation, that exploits efficient data structures and other kinds of optimisations.
While the abstract version has a clean correctness proof, it is usually inefficient or
not executable at all. On the other hand, the correctness proof of the implemen-
tation version is usually cluttered with implementation details that obfuscate the
main ideas and may even render proofs of more complex algorithms unmanage-
able. A standard solution to this problem is to stepwise refine [3] the abstract
algorithm to its implementation, showing that each refinement step preserves
correctness. A special case is data refinement [16], which replaces operations on
abstract datatypes (e. g. sets) by corresponding operations on concrete datatypes
(e. g. red-black trees). In Isabelle/HOL [27], there is some support for data refine-
ment during code generation [14]. However, it is limited to operations that can
be fully specified on the abstract level. This limitation is an inherent problem,
as the following example illustrates:

Example 1. Consider an operation that selects an arbitrary element from a
nonempty set S. Ideally, we would like to write ε x. x ∈ S in the abstract algo-
rithm, where ε is the Hilbert-choice operator. However, this already over-specifies
the operation, as one cannot prove that an implementation of this operation ac-
tually returns the same element as the choice operator does.

A common solution for this problem is nondeterminism. For the functional lan-
guage of Isabelle/HOL, this means to use relations instead of functions. How-
ever, in order to make refinement of relational programs manageable, some tool

support is required. Our first approach in this direction was a formalisation of re-
lational WHILE-loops [20]. It was successfully used to verify a depth first search
algorithm [20] and basic tree automata operations [21]. However, it is tailored to
algorithms with a single while loop and involves some lengthy boilerplate code.

In contrast, this paper presents a general framework for nondeterministic (re-
lational) programs in Isabelle/HOL. Programs are represented by a monad [35],
on which we define a refinement calculus [4, 33]. Monads allow a seamless and
lightweight integration within the functional logic of Isabelle/HOL. Moreover,
we implemented proof tools that automate canonical tasks such as verification
condition generation. Thus, the user of our framework can focus on verifying
the algorithmic ideas of the program, rather than coping with the details of the
underlying refinement calculus. Our framework also integrates nicely with the
Isabelle Collection Framework (ICF) [20, 19], which makes many verified, effi-
cient data structures readily available. When an algorithm has been refined to its
implementation, the code generator of Isabelle/HOL [13, 15] produces efficient
code in various languages, including Standard ML, Haskell and Scala.

We have conducted several case studies that demonstrate the practical appli-
cability of our framework: The framework itself [22] comes with a collection of
simple examples and a userguide that helps one getting started. A more complex
development is the formalisation of Dijkstra’s shortest path algorithm [28]. In
this paper, we present the largest case study so far: As part of the Computer
Aided Verification of Automata-project1, we successfully verified Hopcroft’s min-
imisation algorithm [17] for finite automata. The correctness proof of this algo-
rithm is non-trivial even at an abstract level. Moreover, efficient implementa-
tions usually use some non-obvious optimisations, which would make a direct
correctness proof unmanageable. Thus, it is a good candidate for using stepwise
refinement, which allows a clean separation between the algorithmic idea and
the optimisations.

Related Work Data refinement dates back to Hoare [16]. Refinement calculus
was first proposed by Back [3] for imperative programs and has been subject
to extensive research. Good overviews are [4, 11]. There are various mechanised
formalisations of refinement calculus for imperative programs (e. g. [23, 34, 31]).
They require quite complicated techniques like window reasoning. Moreover, for-
malisation of an universal state space, as required for imperative programs, is
quite involved in HOL (cf. [32]). As also observed in [9], these complications
do not arise in a monadic approach. Schwenke and Mahony [33] combine mon-
ads with refinement calculus. However, their focus is different: While we aim
at obtaining a simple calculus suited to our problems, they strive for introduc-
ing more advanced concepts like angelic nondeterminism. Moreover, they do not
treat data refinement. The work closest to ours is the refinement monad used in
the seL4 project [9]. While they use a state monad to model kernel operations
with side-effects, we focus on refinement of model-checking algorithms, where a
simpler monad without state is sufficient. In some cases, deterministic specifica-

1 see http://cava.in.tum.de/

tions and parametrisation may be viable alternatives to relational specifications
(cf. [24, 14]). However, the relational approach is more general and scalable.

Despite being a widely-used, non-trivial algorithm, we are aware of only one
other formalisation of Hopcroft’s algorithm, which was performed by Braibant
and Pous [8] in Coq. However, they do not verify Hopcroft’s algorithm, but
a simplified one. The level of abstraction used there is a compromise between
having a correctness proof of manageable size and allowing code generation.
In addition, there is a formalisation of the Myhill/Nerode theorem in Nuprl
by Constable, Jackson, Naumov and Uribe [10]. This formalisation allows the
extraction of an inefficient minimisation algorithm.

Contents The rest of this paper is organised as follows: In Section 2, we describe
our refinement framework. In Section 3, a verified, efficient implementation of
Hopcroft’s algorithm is presented as a case study. Finally, Section 4 provides a
conclusion and sketches current and future research.

2 The Refinement Framework

2.1 Basic Concepts

To describe nondeterministic programs, we use a monad over the datatype
(a)M ::= res (a set) | fail. Here, a denotes the type of values, and a set de-
notes sets of values. Intuitively, a result of the form res X means that the
program nondeterministically returns some value x ∈ X. The result fail means
that there exists an execution where some assertion failed. On results, we define
the ordering v by res X v res Y iff X ⊆ Y and m v fail for all m ∈ (a)M . If
we have m v m′, we say that m refines m′. Intuitively, m v m′ means that all
values in m are also in m′.

With this ordering, (a)M is a complete lattice with least element res ∅ and
greatest element fail. The return and bind operations are defined as follows:

return x := res {x} bind (res X) f :=
⊔

(f X) bind fail f := fail.

Note that our monad is a combination of the set and exception monad [35].
Intuitively, the return x operation returns a single value x, and the bind m f
operation nondeterministically chooses a value from m and applies f to it. If
f fails for some value in m, the operation bind m f also fails. We use a do-
notation similar to Haskell, e. g. we write do{x←M ; let y = t; f x; g y} for
bind M (λx. let y = t in bind (f x) (λ . g y)).

A program is a function f : a→ (r)M from argument values to results. Cor-
rectness is defined by refinement: for a precondition Φ : a→ B and a postcondi-
tion Ψ : a→ r → B, we define |= {Φ} f {Ψ} := ∀x. Φ x =⇒ f x v spec (Ψ x),
where we use spec synonymously for res to emphasise that a set of values is
used as specification. Identifying sets with their characteristic predicates, we also
use the notation spec x. Φ x := res {x | x ∈ Φ}. In this context, fail is the
result that refines no specification. Dually, res ∅ is the result that refines any
specification. We use succeed := res ∅ to emphasise this duality.

2.2 Data Refinement

When deriving a concrete program from an abstract one, we also want to replace
abstract data types (e. g. sets) with concrete ones (e. g. hashtables). This process
is called data refinement [16]. To formalise data refinement, we use an abstraction
relation R ⊆ c × a that relates concrete values c with abstract values a. We
implicitly assume that R can be written as R = {(c, αR c) | IR c}, where IR is
called data type invariant and αR is called abstraction function. This restricts
abstraction relations to those relations that map a concrete value to at most one
abstract value, which is a natural assumption in our context.

Example 2. Sets of integers can be implemented by lists with distinct elements.
The invariant IR asserts that the list contains no duplicates and the abstraction
function αR maps a list to the set of its values.

This example illustrates two properties of data refinement: First, the invari-
ant is required to sort out invalid concrete values, in our case lists with duplicate
elements. Second, an implementation is not required to be complete w. r. t. the
abstract data type. In our case, lists can only implement finite sets, while the
abstract data type may represent arbitrary sets.

We define a concretisation function ⇓R : (a)M → (c)M that maps a result
over abstract values to a result over concrete values:

⇓R (res X ′) := res {x | IR x ∧ αR x ∈ X ′} ⇓R fail := fail

Intuitively, ⇓R m′ is the greatest concrete result that corresponds to the abstract
result m′. In Example 2, we have ⇓R (return {1, 2}) = res {[1, 2], [2, 1]}, i. e.
the set of all distinct lists representing the set {1, 2}.

We also define an abstraction function ⇑R : (c)M → (a)M by

⇑R (res X) :=

{
αR X if ∀x ∈ X. IR x

fail otherwise
⇑R fail := fail

We have ⇑Rm v m′ ⇔ m v ⇓Rm′, i. e. ⇑R and ⇓R are a Galois-connection [25].
Galois-connections are commonly used in data refinement (cf. [26, 5]). We exploit
their properties for proving the rules for our recursion combinators.

To improve readability, we define the notations

m vR m′ := m v ⇓R m′ and f vRa→Rr
f ′ := ∀(x, x′) ∈ Ra. f x vRr

f ′ x′.

Intuitively, m vR m′ means that the concrete result m refines the abstract result
m′ w. r. t. the abstraction relation R; f vRa→Rr

f ′ means that the concrete
program f refines the abstract program f ′, where Ra is the abstraction relation
for the arguments and Rr the one for the results.

The operators vR and vRa→Rr
are transitive in the following sense:

m vR1
m′ ∧m′ vR2

m′′ =⇒ m vR1R2
m′′

f vRa1→Rr1
f ′ ∧ f ′ vRa2→Rr2

f ′′ =⇒ f vRa1Ra2→Rr1Rr2
f ′′

where R1R2 := {(x, x′′) | ∃x′. (x, x′) ∈ R1 ∧ (x′, x′′) ∈ R2} is relational compo-
sition. This allows stepwise refinement, which is essential for complex programs,
such as our case study presented in Section 3.

The following rule captures the typical course of program development with
our framework:

|= {Φ} f1 {Ψ} ∧ fn vRa→Rr
f1

=⇒ |= {λx. IRa
x ∧ Φ (αRa

x)} fn {λx x′. IRr
x′ ∧ Ψ (αRa

x) (αRr
x′)}

First, an initial program f1 is shown to be correct w. r. t. a specification. Then,
it is refined (possibly in many steps) to a program fn. The conclusion of the rule
states that the refined program is correct w. r. t. a specification that results from
the abstract specification and the refinement relation: the precondition requires
the argument x to satisfy its data type invariant IRa

and the abstraction of the
argument αRa x to satisfy the abstract precondition Φ. Then, the postcondi-
tion guarantees that the result x′ satisfies the data type invariant IRr and its
abstraction αRr

x′ satisfies the abstract postcondition Ψ .
Ideally, f1 captures the basic ideas of the algorithm on an abstract level, and

fn uses efficient data structures and is executable. In our context, executable
means that the Isabelle code generator [13, 15] can generate code for the program.
This is the case if the program is deterministic and the expressions used in the
program are executable. For technical reasons, we require fn : a→ (r)M to have
the form λx. return (fplain x) (for total correct programs) or λx. nres-of (fdet x)
(for partial correct programs). Here, fplain : a → r is a plain function that
does not use the result monad at all, and fdet : a→ (r)Mdet is a function over a
deterministic result monad, which is embedded into the nondeterministic monad
via the function nres-of : (a)Mdet → (a)M . For deterministic programs fn−1, the
framework automatically generates fn and proves that fn v fn−1 holds.

2.3 Combinators

In this section, we describe the combinators that are used as building blocks for
programs. Note that due to the shallow embedding, our framework is extensible,
i. e. new combinators can be added without modifying the existing code.

We already covered the monad operations return and bind, as well as the re-
sults fail and succeed. Moreover, standard constructs provided by Isabelle/HOL
can be used (e. g. if, let, case, λ-abstraction).

Assertions A useful combinator is assert Φ := if Φ then return () else fail,
where () is the element of the unit type. Its intended use is do{assert Φ;m}.
Assertions are used for refinement in context (cf. [4, Chap. 28]), as illustrated
by the following example:

Example 3. Reconsider Example 2, where sets are implemented by distinct lists.
This time we select an arbitrary element from a set, i. e. we implement the
specification spec x. x ∈ S for some nonempty set S. The concrete operation
is implemented by the hd-function, which returns the first element of a list. We

obviously have S 6= ∅∧ (l, S) ∈ R =⇒ return hd l v spec x. x ∈ S. However, to
apply this rule, we have to know that S is, indeed, nonempty. For this purpose,
we use do{assert S 6= ∅; spec x. x ∈ S} as the abstract operation. Thus, non-
emptiness is shown during the correctness proof of the abstract program, and
refinement can be proved under the assumption that S is not empty.

Recursion In our lattice-theoretic framework, recursion is naturally modelled as
a fixed point of a monotonic functional. Functionals built from monad operations
are always monotonic and already enjoy some tool support in Isabelle/HOL [18].

Assume that we want to define a function f : a → (r)M according to the
recursion equation f x = B f x, where B : (a → (r)M) → a → (r)M is
a monotonic functional describing the body of the function. To reason about
partial correctness, one naturally chooses the least fixed point of B, i. e. one
defines f := lfp B (cf. [4]2). To express the monotonicity assumption, we define

rec B x := do{assert mono B; lfp B x}.

Intuitively, this definition ignores nonterminating executions. In the extreme
case, when there is no terminating execution for argument x at all, we get
rec B x = succeed, which trivially satisfies any specification.

Dually, total correctness is naturally described by the greatest fixed point:

recT B x := do{assert mono B; gfp B x}.

Intuitively, already a single non-terminating execution from argument x results
in recT B x = fail, which trivially does not satisfy any specification.

Note, that the intended correctness property (partial or total) is determined
by the combinator (rec or recT) used in the program. It would be more natural
to determine this by the specification. The Egli-Milner order [12, 30] provides a
tool for that. Using it in our framework is left for future work.

From the basic recursion combinators, we derive the combinators while,
whileT and foreach, which model tail-recursive functions and iteration over
the elements of a finite set, respectively. These combinators allow for more read-
able programs and proofs. Moreover, a foreach-loop can easily be refined to
a fold operation on the data structure implementing the set, which usually re-
sults in more efficient programs. The Isabelle Collection Framework [19] provides
such fold-functions (called iterators there), and our refinement framework can
automatically refine foreach-loops to iterators.

2.4 Proof Rules

In this section, we describe the proof rules provided by our framework. Given
a proof obligation m vR m′, these rules work by syntactically decomposing m
and m′, generating new proof obligations for the components of m and m′.

2 The description there [4, Chap. 20] is based on weakest preconditions. Their lattice
is dual to ours, i. e. fail (called abort there) is the least element and succeed (called
magic there) is the greatest element. Hence, they take the greatest fixed point for
partial correctness and the least fixed point for total correctness.

Typically, a refinement step refines spec-statements to their implementations
and performs data refinements that preserve the structure of the program. Thus,
we distinguish two types of refinement: Specification refinements have the form
m vR spec Φ, and pure data refinements have the form m vR m′, where the
topmost combinator in m and m′ is the same. For each combinator, we provide
a proof rule for specification refinement and one for pure data refinement.

Note that in practice not all refinements are specification or pure data re-
finements. Some common cases, like introduction or omission of assertions, are
tolerated by our verification condition generator. For more complex structural
changes, we provide a method to convert a refinement proof obligation into a
boolean formula, based on pointwise reasoning over the underlying sets. This
formula is solved using standard Isabelle/HOL tools. In practice, this works well
for refinements that do not involve recursion.

For the basic combinators, we use the following rules:

(∀a. Φ a =⇒ f a v spec (Ψ a)) =⇒ |= {Φ} f {Ψ} (fun-sp)(
∀a a′. (a, a′) ∈ Ra =⇒ f a vRr f

′ a′
)

=⇒ f vRa→Rr f
′ (fun-dr)(

m v spec x. ∃ x′. (x, x′) ∈ R ∧ Φ x′
)

=⇒ m vR spec Φ (spec-dr)

(∀x. Φ x =⇒ Ψ x) =⇒ spec Φ v spec Ψ (spec-sp)

Φ r =⇒ return r v spec Φ (ret-sp)

(r, r′) ∈ R =⇒ return r vR return r′ (ret-dr)

m v spec x. (f x v spec Φ) =⇒ bind m f v spec Φ (bind-sp)

m vR1 m
′ ∧ f vR1→R2 f

′ =⇒ bind m f vR2 bind m′ f ′ (bind-dr)

mono B ∧ Φ x0 ∧ (∀f x. Φ x ∧ |= {Φ} f {Ψ} =⇒ B f x v spec (Ψ x))

=⇒ rec B x0 v spec (Ψ x0) (rec-sp)

mono B ∧ Φ x0 ∧ wf V

∧
(
∀f x. Φ x ∧ |= {λx′. Φ x′ ∧ (x′, x) ∈ V } f {Ψ} =⇒ B f x v spec (Ψ x)

)
=⇒ recT B x0 v spec (Ψ x0) (rect-sp)

mono B ∧ (x, x′) ∈ Ra ∧
(
∀f f ′. f vRa→Rr f

′ =⇒ B f vRa→Rr B′ f ′)
=⇒ rec B x vRr rec B′ x′ ∧ recT B x vRr recT B′ x′ (rec(t)-dr)

Note that, due to space constraints, we omitted the rules for some standard
constructs (if, let, case). The rules (fun-sp) and (fun-dr) unfold the shortcut nota-
tions for programs with arguments, and (spec-dr) pushes the refinement relation
inside a spec-statement. Thus, the other rules only need to consider goals of the
form m v ⇓R m′ and m v spec Φ. The (spec-sp)-rule converts refinement of
specifications to implication. The (ret-sp) and (ret-dr)-rules handle refinement of
return statements. The (bind-sp)-rule decomposes the bind-combinator by gen-
erating a nested specification. The (bind-dr)-rule introduces a new refinement
relation R1 for the bound result. The (rec-sp)-rule requires to provide an invari-
ant Φ and to prove that the body of the recursive function is correct, under the

inductive assumption that recursive calls behave correctly. The (rect-sp)-rule
additionally requires a well-founded3 relation V , such that the parameters of
recursive calls decrease according to V . Note, that these rules resemble the rules
used for Hoare-Calculus with procedures (cf. [29] for an overview). The intuition
of the (rec-dr)-rule is similar: One has to show that the function bodies are in
refinement relation, under the assumption that recursive calls are in relation.

Also the rules for while-loops, which are displayed below, resemble their
counterparts from Hoare-Calculus:

I x0 ∧ (∀x. I x ∧ b x =⇒ f x v spec I) ∧ (∀x. I x ∧ ¬b x =⇒ Φ x)

=⇒ while b f x0 v spec Φ (while-sp)

wf V ∧ I x0 ∧ (∀x. I x ∧ b x =⇒ f x v spec (λx′. I x′ ∧ (x′, x) ∈ V))

∧ (∀x. I x ∧ ¬b x =⇒ Φ x)

=⇒ whileT b f x0 v spec Φ (whilet-sp)

(x0, x
′
0) ∈ R ∧

(
∀(x, x′) ∈ R. b x = b′ x′ ∧

(
b x =⇒ f x vR f ′ x′

))
=⇒ while b f x0 vR while b′ f ′ x′0 ∧whileT b f x0 vR whileT b′ f ′ x′0

(while(t)-dr)

Verification Condition Generator The proof rules presented above are engineered
such that their iterated application decomposes a refinement proof obligation
into new proof obligations that do not contain combinators any more. We imple-
mented a verification condition generator (VCG) that automates this process.
Invariants and well-founded relations are specified interactively during the proof.
We also provide versions of while-loops that are annotated with their invariant.
To also make this invariant available for refinement proofs, the annotated while-
loops assert its validity. The rules for the recursion combinators introduce mono-
tonicity proof obligations, which our VCG discharges automatically, exploiting
monotonicity of monad expressions (cf. [18]).

When data-refining the bind-combinator (bind-dr), a refinement relation R1

for the bound result is required. Here, we provide a heuristics that guesses an
adequate relation from its type, which works well for most cases. In those cases
where it does not work, refinement relations can be specified interactively.

3 Hopcroft’s Algorithm

3.1 Motivation

As part of the Computer Aided Verification of Automata-Project4 a library for
finite automata is currently developed in Isabelle/HOL [27]. A minimisation al-
gorithm is an important part of such a library. First Brzozowski’s minimisation
algorithm [36] was implemented, because its verification and implementation is
straightforward. As the automata library matured, providing Hopcroft’s minimi-
sation algorithm [17] was desirable, because it is more efficient.

3 We define wf V iff there is no infinite sequence 〈xi〉i∈N with ∀i. (xi+1, xi) ∈ V
4 see http://cava.in.tum.de/

When we first implemented Hopcroft’s algorithm, the refinement framework
was not yet available. We therefore used relational WHILE-loops [20]. Unluckily,
this technique does not support nondeterministic, nested loops. Therefore, we
first verified a very abstract version of Hopcroft’s algorithm that does not require
an inner loop. In one huge step, this abstract version was then refined to an
executable one that uses a deterministic inner loop. Intermediate refinement
steps were not possible due to the missing support for nondeterministic, nested
loops. A simple refinement step finally led to code generation using the Isabelle
Collection Framework [20, 19].

Using one large refinement step, resulted in a lengthy, complicated proof.
Many ideas were mixed and thereby obfuscated. Another problem was that
reusing invariants during refinement was tricky. As a result, some parts of the
abstract correctness proof had to be repeated. Worst of all, the implementation
of Hopcroft’s algorithm used only simple data structures and optimisations. As
the refinement proof was already complicated and lengthy, we did not consider
it manageable to verify anything more complex. For our examples, the resulting
implementation was not significantly faster than the simple, clean implementa-
tion of Brzozowski’s algorithm. Thus, we did not achieve our goal of providing
an efficient minimisation algorithm.

Using the refinement framework solved all these problems. The monadic ap-
proach elegantly handles nondeterminism. In particular, nested, nondetermin-
istic loops are supported. Therefore, the huge, cluttered refinement step of the
first attempt could be replaced with several small ones. Each of these new refine-
ment steps focuses on only one issue. Hence, they are conceptually much easier
and proofs are cleaner and simpler, especially as the refinement framework pro-
vides good automation. Constructs like assert transport important information
between the different layers. This eliminates the need to reprove parts of the
invariant. Moreover, these improvements of the refinement infrastructure make
it feasible to refine the algorithm further. The generated code behaves well for
our examples.

In the following, the new version of the implementation of Hopcroft’s al-
gorithm [17] is presented. The presentation focuses on refinement. We assume
that the reader is familiar with minimisation of finite automata. An overview of
minimisation algorithms can be found in Watson [36].

3.2 Basic Idea

Let A = (Q, Σ, δ, q0,F) be a deterministic finite automaton (DFA) consisting of
a finite set of states Q, an alphabet Σ, a transition function δ : Q×Σ → Q, an
initial state q0 and a set of accepting states F ⊆ Q. Moreover, let A contain only
reachable states. Hopcroft’s algorithm computes the Myhill-Nerode equivalence
relation in the form of the partition {{q′ | q′ is equivalent to q} | q ∈ Q}. Given
this relation, the minimal automaton can easily be derived by merging equivalent
states.

The abstract idea is to first partition states into accepting and non-accepting
ones: partF := {F ,Q−F}−{∅}. The algorithm then repeatedly splits the equiv-

alence classes of the partition and thereby refines the corresponding equivalence
relation, until the Myhill-Nerode relation is reached. With the following defini-
tions this leads to the pseudocode shown in Alg. 1. A correctness proof of this
abstract algorithm can e. g. be found in [36].

splitA(C, (a,Cs)) := ({q | q ∈ C ∧ δ(q, a) ∈ Cs},
{q | q ∈ C ∧ δ(q, a) 6∈ Cs})

splittableA(C, (a,Cs)) := let (Ct, Cf) = splitA(C, (a,Cs)) in Ct 6= ∅ ∧ Cf 6= ∅

initialise P with partF ;
while there are C ∈ P and (a,Cs) ∈ Σ × P with splittableA(C, (a,Cs)) do

choose such C and (a,Cs);
update P by removing C and adding the two results of splitA(C, (a,Cs));

end
return P;

Algorithm 1: Pseudocode for the Basic Idea of Hopcroft’s Algorithm

3.3 Abstract Algorithm

The tricky part of Alg. 1 is finding the right splitter (a,Cs). Hopcroft’s algo-
rithm maintains an explicit set L of all splitters that still need to be tried.
Two observations are used to keep L small: once a splitter has been tried,
it does not need to be retried later. Moreover, given C, Ct, Cf , a, Cs with
splitA(C, (a,Cs)) = (Ct, Cf), it is sufficient to consider only two of the three
splitters (a,C), (a,Ct), (a,Cf). With some boilerplate to discharge degenerated
corner-cases, these ideas lead to Alg. 2.

Hopcroft step abstract(A, a, Cs,P, L) =
spec (P ′, L′). P ′ = SplitA(P, (a,Cs)) ∧ splitter PA(P, (a,Cs), L, L′);

Hopcroft abstract(A) =
if (Q = ∅) then return ∅ else
if (F = ∅) then return {Q} else
whileHopcroft abstract invar

T (λ(P, L). L 6= ∅) (λ(P, L). do {
(a,Cs)← spec x. x ∈ L;
(P ′, L′)← Hopcroft step abstract(A, a, Cs,P, L);
return (P ′, L′);
}) (partF , {(a,F) | a ∈ Σ})

Algorithm 2: Abstract Hopcroft

Notice, that Alg. 2 is written in the syntax of the refinement framework.
Therefore, the formal definition in Isabelle/HOL looks very similar to the one
presented here. Due to space limitations, some details are omitted here, though.
In particular, the loop invariant Hopcroft abstract invar, as well as the formal

definitions of Split and splitter P are omitted5. Informally, the function Split
splits all equivalence classes of a partition. splitter P is an abstract specification
of the desired properties of the new splitter set L′. It states that every element
(a,C) of L′ is either a member of L or that C was added to P ′ in this step.
All splitters (a,C) such that C 6= Cs and C has not been split, remain in the
splitter set. For all classes C that are split into Ct and Cf and for all a ∈ Σ at
least one of the splitters (a,Ct) or (a,Cf) needs to be added to L′. If (a,C) is
in L, both need to be added.

3.4 Set Implementation

In a refinement step, Split and splitter P are implemented using a loop (see
Alg. 3). First a subset P ′ of P is chosen, such that all classes that need to be
split are in P ′. Then the foreach loop processes each class C ∈ P ′ and updates
L and P. Hopcroft step set is a correct refinement of Hopcroft step abstract (see
Alg. 2) provided the invariant of Alg. 2 holds. The refinement framework allows
us to use this invariant without reproving it.

Alg. 3 is a high-level representation of Hopcroft’s algorithm similar to the
ones that can be found in literature (e. g. [36]). By fixing a set representation it
would be easily possible to generate code. From now on, refinement focuses on
performance improvements.

Hopcroft step set(A, a, Cs,P, L) =
P ′ ← spec P ′. P ′ ⊆ P ∧ (∀C ∈ P. splittableA(C, (a,Cs))⇒ C ∈ P ′);

(P ′, L′)← foreachHopcroft set invar P ′ (λC (P ′, L′). do {
let (Ct, Cf) = splitA(C, (a,Cs));
if (Ct = ∅ ∨ Cf = ∅) then return (P ′, L′) else do {

(C1, C2)← spec x. x ∈ {(Cf , Ct), (Ct, Cf)};
let P ′ = (P ′ − {C}) ∪ {C1, C2};
let L′ = (L′−{(a,C) | a ∈ Σ}) ∪ {(a,C1) | a ∈ Σ} ∪ {(a,C2) | (a,C) ∈ L′};
return (P ′, L′);
}
}) (P, L− {(a,Cs)});
return (P ′, L′);

Algorithm 3: Hopcroft Step

3.5 Precomputing the Predecessors

The loop of Alg. 3 computes split(C, (a,Cs)) for many different classes C, but
a fixed splitter (a,Cs). As an optimisation, the set pre := {q | δ(q, a) ∈ Cs} is
precomputed. It is used to compute split. Moreover, the choice of C1 and C2 is
fixed using the cardinality of Cf and Ct. Provided only finite classes are used, the
resulting algorithm is a refinement of Alg. 3. Again, the refinement framework
allows us to use the invariant of Alg. 2 to derive this finiteness condition.

5 They are available at http://cava.in.tum.de as part of the Isabelle/HOL sources.

3.6 Representation of Partitions

Representing partitions as sets of sets leads to inefficient code. Therefore, the
following data refinement changes this representation to one based on finite
maps. im maps an integer index to a class (represented as a set). sm maps a
state to the index of the class it belongs to. An integer n is used to keep track
of the number of classes. The following abstraction function and invariant are
used for the resulting triples (im, sm, n):

partition map invar(im, sm, n) :=
dom(im) = {i | 0 ≤ i < n} ∧ (∀0 ≤ i < n. im(i) 6= ∅) ∧
(∀q. sm(q) = i⇔ (0 ≤ i < n ∧ q ∈ im(i)))

partition map α(im, sm, n) := {im(i) | 0 ≤ i < n}

Using this representation leads to Alg. 4. When splitting a class C, the old in-
dex is updated to point to Cmax. As a result, the update of L becomes much
simpler, as the replacement of splitters (a,C) with (a,Cmax) now happens implic-
itly. In contrast to previous refinement steps, the data-refinement also requires
a straightforward refinement of the outer loop. Due to space limitations, this
refinement is not shown here.

Hopcroft step map(A, a, is, (im, sm, n), L) =
let pre = {q | δ(q, a) ∈ im(is)};
I ← spec I. I ⊆ {sm(q) | q ∈ pre} ∧

(∀q ∈ pre. splittableA(im(sm(q)), (a, im(is)))⇒ sm(q) ∈ I);

((im′, sm′, n′), L′)← foreachHopcroft map invar I (λi ((im′, sm′, n′), L′). do {
let (Ct, Cf) = ({q | q ∈ im(i) ∧ q ∈ pre}, {q | q ∈ im(i) ∧ q 6∈ pre});
if (Cf = ∅) then return ((im′, sm′, n′), L′) else do {

let (Cmin, Cmax) = if (|Cf | < |Ct|) then (Cf , Ct) else (Ct, Cf);
let (im′, sm′, n′) = (im′(i 7→ Cmax, n 7→ Cmin),

λq. if q ∈ Cmin then n else sm′(q), n′ + 1);

let L′ = {(a, n) | a ∈ Σ} ∪ L′;
return ((im′, sm′, n′), L′);
}
}) ((im, sm, n), L− {(a, is)});
return ((im′, sm′, n′), L′);

Algorithm 4: Hopcroft Map Representation

3.7 Representation of Classes

Alg. 4 is already executable efficiently. However, refining the representation of
classes leads to further performance improvements. Following the implementa-
tion of Hopcroft’s algorithm by Baclet and Pagetti [6], we use a bijective, finite
map pm from Q to {i | 0 ≤ i < |Q|} and its inverse pim. By carefully updating
pm and pim during the run of the algorithm, it can be ensured that all classes
that are needed are of the form {pim(i) | l ≤ i ≤ u}. Therefore, classes can be

represented by a pair of indices l, u. Due to space limitations, details are omitted
here5.

3.8 Code Generation

Thanks to the good integration of our refinement framework with the Isabelle
Collection Framework (ICF) [19], it is straightforward to implement the sets
and finite maps used in Hopcroft’s algorithm with executable datastructures
provided by the ICF.

For the implementation we fix states to be natural numbers. This allows us
to implement finite maps like pm, pim, im or sm by arrays. Other finite maps as
well as most sets are implemented by red-black-trees.

For computing the set of predecessors pre, it is vital to be able to efficiently
iterate over the union of many sets. This is achieved by using sorted lists of
distinct elements for computing pre. In order to efficiently look up the set of
predecessors for a single state and label, a datastructure using arrays and sorted
lists is generated in a preprocessing step.

The set of splitters is implemented by an unsorted list of distinct elements.
Lists can easily be used as a stack and then provide the operations of inserting a
new element and removing an element very efficiently. More importantly though,
the choice of the splitter influences the runtime considerably. Experiments by
Baclet and Pagetti [6] suggest that implementing L as a stack is a good choice.

Once the datastructures have been instantiated, Isabelle is able to generate
code in several programming languages including SML, OCaml, Haskell and
Scala.

3.9 Experimental Results

To test our implementation, we benchmarked it against existing implementa-
tions of minimisation algorithms. We compare our implementation with a highly
optimised implementation of Hopcroft’s algorithm by Baclet and Pagetti [6] in
OCaml. Moreover, we compare it with an implementation of Blum’s algorithm [7]
that is part of an automaton library by Leiß6 in Standard ML. It is unfortunate
for the comparison that Leiß implements Blum’s algorithm instead of Hopcroft’s.
However, we believe that a comparison is still interesting, because Blum’s algo-
rithm has the same asymptotic complexity. As it was written for teaching, Leiß’
library is using algorithms and code that are comparably easy to understand.
Keeping this in mind, a bug7 that was discovered after 10 years in the minimi-
sation algorithm is a strong argument for verified implementations.

For a fair comparison, we generated code in OCaml and PolyML for our im-
plementation and benchmarked it against these two implementations. It is hard
to decide though, what exactly to measure. Most critically, Leiß’ implementa-
tion as well as ours compute the minimal automaton, while the code of Baclet

6 http://www.cis.uni-muenchen.de/˜leiss
7 see changelog in fm.sml

and Pagetti stops after computing the Myhill-Nerode equivalence relation. This
is significant, because with our red-black-tree based automata implementation,
between 35 and 65 % of the total runtime is spent with constructing the minimal
automaton. Implementations based on arrays would be considerably faster for
this operation.

Another problem are integers. Baclet and Pagetti use the default integer type
of OCaml, which is – depending on the architecture – either 31 or 63 bit wide. In
contrast, Leiß’ and we use arbitrary size integers. The OCaml implementation of
arbitrary size integers is slow. Replacing them leads to a speedup of our OCaml
code of a factor of about 2.5, but results in unsound code for huge automata.

Because of these issues, we decided to provide measurements for a version
that generates the minimal automaton and uses arbitrary size integers as well as
measurements for a version that stops after computing the Myhill-Nerode equiv-
alence relation and uses the default integers of OCaml. A random generator for
DFAs [2], which is available as part of the FAdo [1] library, was used to generate
sets of benchmark automata. Fig. 1 shows how long each implementation needs
to minimise all the automata in these benchmark sets. The numbers in paren-
theses denote the runtime when stopping after generating the Myhill-Nerode
equivalence relation.

No. No. No. Baclet/Pagetti Lammich/Tuerk Leiß
DFAs states labels OCaml OCaml PolyML PolyML

10000 50 2 0.17 s 6.59 s (1.62 s) 1.88 s (1.02 s) 5.38 s
10000 50 5 0.27 s 12.62 s (3.34 s) 3.51 s (1.83 s) 19.34 s
10000 100 2 0.31 s 14.31 s (3.30 s) 3.97 s (1.89 s) 16.41 s
10000 100 5 0.51 s 26.13 s (6.79 s) 7.56 s (3.78 s) 63.21 s
10000 250 2 0.69 s 41.02 s (11.12 s) 11.09 s (5.17 s) 83.62 s

1000 1000 2 0.51 s 18.61 s (4.92 s) 5.37 s (2.36 s) 134.21 s
1000 2500 2 1.44 s 51.35 s (13.52 s) 17.88 s (6.89 s) 905.82 s

Fig. 1. Experimental Results (measured on an Intel Core I7 2720QM)

The implementation of Leiß behaves worst, especially on larger automata.
This might be partly due to the different algorithm. The implementation by
Baclet and Pagetti clearly performs best. It outperforms our implementation
roughly by one order of magnitude.

4 Conclusion

We have presented a framework for stepwise refinement of monadic programs
in Isabelle/HOL. The stepwise refinement approach leads to a clean separation
between the abstract model of an algorithm, which has a nice correctness proof,
and the optimisations that eventually yield an efficient implementation. Our
framework provides theorems and tools that simplify refinement steps and thus
allow the user to focus on the ideas of the algorithm. We have demonstrated
the usefulness of our framework by various examples. The most complex ones,
verified implementations of Dijkstra’s algorithm [28] and Hopcroft’s algorithm,
would not have been manageable without this framework.

Current and Future Research A topic of current research is to add even more
automation to our framework. For example, we have implemented a prototype
tool that automatically refines abstract data types to efficient implementations
taken from the Isabelle Collection Framework [19]. The translation is controlled
by a map between abstract and concrete types, and optional annotations to
resolve ambiguities. The tool works well for examples of medium complexity, like
our formalisation of Dijkstra’s algorithm [28], but still requires some polishing.

Another interesting topic is to unify our approach with the one used in the
seL4 project [9]. The goal is a general framework that is applicable to a wide
range of algorithms, including model-checking algorithms and kernel-functions.

Acknowledgements We thank Manuel Baclet and Thomas Braibant for inter-
esting discussions and their implementations of Hopcroft’s algorithm. We also
thank Petra Malik for her help with formalising finite automata.

References

1. Almeida, A., Almeida, M., Alves, J., Moreira, N., Reis, R.: FAdo and GUItar. In
Maneth, S. (ed.) CIAA. LNCS, vol. 5642, pp. 65–74. Springer (2009)

2. Almeida, M., Moreira, N., Reis, R.: Enumeration and generation with a string
automata representation. Theor. Comput. Sci. 387, 93–102 (2007)

3. Back, R.J.: On the correctness of refinement steps in program development. PhD
thesis, Department of Computer Science, University of Helsinki (1978)

4. Back, R.J., von Wright, J.: Refinement Calculus — A Systematic Introduction.
Springer (1998)

5. Back, R.J., von Wright, J.: Encoding, decoding and data refinement. Formal
Aspects of Computing 12, 313–349 (2000)

6. Baclet, M., Pagetti, C.: Around Hopcroft’s Algorithm. In: Proc. of CIAA 2006,
pp. 114–125 (2006)

7. Blum, N.: An O(n log n) implementation of the standard method for minimizing
n-state finite automata. Information Processing Letters 6(2), 65–69 (1996)

8. Braibant, T., Pous, D.: A tactic for deciding kleene algebras. In: First Coq Work-
shop. (2009)

9. Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable
refinement. In: Proc. of TPHOLs. LNCS, vol. 5170, pp. 167–182. Springer (2008)

10. Constable, R.L., Jackson, P.B., Naumov, P., Uribe, J.: Formalizing automata
theory i: Finite automata (1997)

11. de Roever, W.P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods
and their Comparison. Cambridge University Press (1998)

12. Egli, H.: A mathematical model for nondeterministic computations. Technical
report, ETH Zürich (1975)

13. Haftmann, F.: Code Generation from Specifications in Higher Order Logic. PhD
thesis, Technische Universität München (2009)

14. Haftmann, F.: Data refinement (raffinement) in Isabelle/HOL (2010) Available at
https://isabelle.in.tum.de/community/.

15. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Functional and Logic Programming (FLOPS 2010). LNCS. Springer (2010)

16. Hoare, C.A.R.: Proof of correctness of data representations. Acta Informatica 1,
271–281 (1972) 10.1007/BF00289507.

17. Hopcroft, J.E.: An n logn algorithm for minimizing the states in a finite automa-
ton. In: Theory of Machines and Computations. Academic Press 189–196 (1971)

18. Krauss, A.: Recursive definitions of monadic functions. In: Proc. of PAR, pp. 1–13
(2010)

19. Lammich, P., Lochbihler, A.: The Isabelle collections framework. In: Proc. of ITP.
LNCS, vol. 6172, pp. 339–354. Springer (2010)

20. Lammich, P.: Collections framework. In: The Archive of Formal Proofs.
http://afp.sf.net/entries/collections.shtml (2009) Formal proof development.

21. Lammich, P.: Tree automata. In: The Archive of Formal Proofs.
http://afp.sf.net/entries/Tree-Automata.shtml (2009) Formal proof development.

22. Lammich, P.: Refinement for monadic programs. In: The Archive of Formal Proofs.
http://afp.sf.net/entries/DiskPaxos.shtml (2012) Formal Proof Development.

23. Langbacka, T., Ruksenas, R., von Wright, J.: Tkwinhol: A tool for doing win-
dow inference in hol. In: Proc. of International Workshop on Higher Order Logic
Theorem Proving and its Applications, pp. 245–260. Springer-Verlag (1995)

24. Lochbihler, A., Bulwahn, L.: Animating the formalised semantics of a java-like
language. In: Proc. of ITP. LNCS, vol. 6898, pp. 216–232. Springer (2011)

25. Melton, A., Schmidt, D., Strecker, G.: Galois connections and computer science
applications. In: Category Theory and Computer Programming. LNCS, vol. 240.
Springer 299–312 (1986)

26. Müller-Olm, M.: Modular Compiler Verification — A Refinement-Algebraic Ap-
proach Advocating Stepwise Abstraction. LNCS, vol. 1283. Springer (1997)

27. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer (2002)

28. Nordhoff, B., Lammich, P.: Formalization of Dijkstra’s algorithm (2012) Formal
Proof Development.

29. Olderog, E.R.: Hoare’s logic for programs with procedures what has been achieved?
In: Logics of Programs. LNCS, vol. 164. Springer 383–395 (1984)

30. Plotkin, G.D.: A powerdomain construction. SIAM J. Comput. 5, 452–487 (1976)
31. Preoteasa, V.: Program Variables — The Core of Mechanical Reasoning about

Imperative Programs. PhD thesis, Turku Centre for Computer Science (2006)
32. Schirmer, N.: Verification of Sequential Imperative Programs in Isabelle/HOL.

PhD thesis, Technische Universität München (2006)
33. Schwenke, M., Mahony, B.: The essence of expression refinement. In: Proc. of

International Refinement Workshop and Formal Methods, pp. 324–333 (1998)
34. Staples, M.: A Mechanised Theory of Refinement. PhD thesis, University of

Cambridge (1999) 2nd edition.
35. Wadler, P.: Comprehending monads. In: Mathematical Structures in Computer

Science, pp. 61–78 (1992)
36. Watson, B.W.: A taxonomy of finite automata minimization algorithms. Comp.

Sci. Note 93/44, Eindhoven University of Technology, The Netherlands (1993)

