Advanced Documentation and
Testing Tool (Adatt)

Thomas Tuerk

May 2021

Git Revision: fd83087
Thu May 6 22:22:46 2021
Thomas Tuerk

Contents

T Moiivation

[2. Language of Adatt|

[2.1. Noteworthy features of Adatt|

[2.1.1. Module System| oL

2.1.2. Partial and extensible definitions

[2.1.3. Type Classes|

[2.1.5. Templateg . .

[2.1.6. List and Set-Comprehensions|

[3. Configuration|

[4. Templates|

[4.1. types of tags and templates| L.

[4.2. template expressions|
[4.2.1. template types|
[4.2.2. Type Coercion|

M23 Titerald
[4.2.4. Functions and Attributesl
[A._Grammarl

1. Motivation

Advanced Documentation and Testing Tool (Adatt) is a tool for writing formal, ex-
ecutable specifications. It is intended to be used by both domain and formal-method
experts. Different users with different backgrounds can contribute different parts of a
specification. One core idea is using the same Adatt documents for multiple purposes
and allowing different users with different backgrounds to contribute to different parts
of a specification.

Superficially, Adatt looks like a functional programming language with special support
for writing documentation and specifications. Adatt specifications can be translated to

e high quality human readable documentation (Latex, HTML)
« executable code (Ocaml, SML, Haskell, Javascript)

o formal specifications for interactive theorem provers (HOL 4, Isabelle/HOL, Coq)

One can start with writing human readable documentation without any formal con-
tent. Declaring types, constants (including functions), which are referred to in the
natural language text, can improve the documentation by e.g. ensuring there are no
spelling mistakes in these or easily finding all places, a type or constant is referred to.
The documentation can be further improved by adding some type definitions, constant
signatures or simple test-cases. Perhaps it is even enough for already generating a little
bit of executable code that can be used as a test-oracle. By adding more test cases and
simple executable specifications the generated executable code becomes more complete
and thereby useful. Even if not all types and constants have definitions, one can already
use formal methods to reason about the existing specifications and test-cases. However,
by adding non-executable properties and having some theorem prover experts add more
complicated specifications a good formal specification can be written that maps well to
theories already present in various interactive theorem provers.

2. Language of Adatt

Adatt’s specification language is essentially higher order logic with a few simple exten-
sions. Omne core extension is that certain types and functions can be marked as non-
executable. This allows carving out the subset of the specification language that can be
executed, i.e. that can be exported to a programming language. This extension also al-
lows to distinguish between Bool and Prop, i.e. between executable and non-executable
boolean values. This simplifies the export to backends like Coq significantly.

While Adatt’s specification language has to provide nice syntax and powerful features
to be convenient and user-friendly, it is also problematic to stray too far from the features
directly supported by the target languages, especially the theorem prover backends. A
close connection between the specifications exported by Adatt to interactive theorem
provers and the input provided by users is essential. Without such a close connection,
it is difficult to transfer the users intuition about the specification to proofs about the
exported specification. Moreover, convincing oneself that the exported specification rep-
resents the input faithfully becomes tricky. Due to the logics used by common interactive
theorem provers, this means that all features of Adatt’s specification languages need to
be compilable in a straightforward way to higher order logic.

The syntax of Adatt’s specification language is resembling Haskell-syntax. However,
in contrast to Haskell, the specification language does not rely on indentation and is
more verbose. One design goal was to have an easily readable, intuitive language. This
readability comes at the price of being more verbose than e. g. Haskell. However, a good
user-interface mitigates this drawback by automatically generating some of the code for
the user. Adatt comes with a build-in Language Server Protocol (LSP)[] server. This
provides i.a. rapid feedback, auto-completion and code generation. LSP is a protocol
supported by many IDEs and editors. Adatt comes with an extension for Visual Studio
Code (VS Code) E]that uses the LSP server. Commonly used editors and IDEs come
with LSP support and it is therefore hopefully straightforward to use with your favourite
editor.

A typical example for the verbosity of Adatt’s language is that Adatt expects (but
does not strictly requires) functions to be declared. This improves readability, but seems
superfluous since Adatt can infer the type of functions. However, the LSP interface can
automatically generate declarations and fix type-mismatches in declarations. Another
example is that Adatt requires all types and functions to state explicitly, whether they
are (mutually) recursive. Again, the LSP interface can be used to add and fix the
recursivity declarations.

Ihttps://microsoft.github.io/language-server-protocol/
https://code.visualstudio.com/

https://microsoft.github.io/language-server-protocol/

2. Language of Adatt

2.1. Noteworthy features of Adatt

2.1.1. Module System

Adatt organises specifications in modules. They are similar to Haskell or SML modules
in that they group types, functions, tests, type-classes etc.. Adatt tries to give users
maximum flexibility in how to organise specifications. One file can contain multiple
modules or parts of modules and modules can consists of multiple parts defined in
multiple files. The order in which statements like function and type definitions and
declarations appear in a module part or in which part they occur mostly does not
matter.

The envisioned usage is that different users own different files which operate on dif-
ferent levels of abstraction. One user can write high-level documentation and just add a
few type and function names inlined in this human readable documentation using literal
programming. In another file, these types could be made more concrete and some type
signatures of functions could be added (e.g. as part of a technical documentation). A
third file could contain test cases and yet another one executable specifications. These
executable specifications could already be exported to programming languages and the-
orem provers. Experts for these backends could tweak the output in even more files for
the same module by mapping the defined concepts to existing libraries and theories for
the backends.

While this is the envisioned usage for large, complex specifications written by multiple
users, the classical approach of defining one module per file is to be preferred in simpler
situations. The main point is that the module system tries to be as flexible as possible
to accommodate the workflow preferred by the user and suitable for a concrete project.

2.1.2. Partial and extensible definitions

An important part of the flexibility Adatt aims for is that even functions and types can
be defined in multiple places.

One can start with just declaring a type. At another place it could be defined as e. g.
an datatype (variant type) or a recordtype. Not all constructors or fields have to be
provided at the same place. In one module part some of the constructors or fields can
be defined, while another user can add more constructors or fields in another part in
another file. Similarly, functions can be defined in multiple places.

Extending types with additional fields or constructors is one of the very few places
in Adatt where the order in which statements appear in a module matters. When
automatically generating code for the type via templates, the order, in which the fields
or constructors are defined matters. For example the automatically generate code for
an instance of the Ord typeclass for comparing values uses the order in which fields are
defined to determine their precedence. While this minor dependency on order is still
acceptable for auto-generated code, such dependencies would be rather confusing for
manually written code. Therefore, Adatt enforces multiple definitions of a function to
non-overlap. This means that none of the multiple definitions (partly) shadows another

2. Language of Adatt

one. Therefore their order does not matter.

2.1.3. Type Classes

Adatt supports type-classes with default implementations, multiple arguments with sim-
ple functional dependencies, unification constraints and higher kinded arguments. More-
over, it is possible to attach tests and properties to type classes that all instances need
to satisfy.

Type classes are a very convenient and powerful feature. Unluckily, they are not
supported by some of the backends. Moreover, the supported features of type-classes
differ significantly even for backends that support them. Therefore, Adatt has to be
able to remove type-classes during compilation. A classical approach for removing type-
classes is the introduction of type-class dictionaries. A record-type for a type-class is
defined, type-class instances become values of this new type and functions using the
type class get another implicit argument of this dictionary-type. When using higher
order logic this approach has some restrictions due to the type-system of higher order
logic: this translation cannot support higher kinded type variables and no polymorphism.
Unluckily, these features are very common. Examples are the type-classes for folding
over some datastructure or for monads:

class Monad (°M :: * -> %) where
declare (>>=) :: ’M ’a -> (’a -> ’M ’b) -> M ’b
declare return :: ’a -> M ’a

end-class

class Foldable ’F where

declare tolist :: ’F ’e -> [’€]
declare foldr :: (e -> ’a -> ’a) -> ’a -> ’F ’e -> ’a
declare foldl :: (a => ’e => ’a) -> ’a —> ’F ’e -> ’a
declare elem :: Eq ’e => ’e -> ’F ’e -> Bool
declare size :: ’F ’e —-> Natural
declare null :: ’F ’e -> Bool

end-class

Adatt supports such higher kinded type-classes by allowing them to be declared as
statically resolved. With this annotation Adatt requires all usages of functions of this
type class to be resolve at usage point. Because the needed instance it known statically,
inlining can be used and the need for dictionaries disappears. Similarly, constants or
types using higher-kinded type variables must not be present after compilation. This
means that they need to be inlined. Static resolving and inlining functions are good
workarounds, but can be inconvenient. A typical example is the definition of auxiliary
functions like mapM (see section [2.1.4)).

Sometimes the issue with higher kinded type-class arguments can be mitigated by
using multi-parameter type-classes. In this case, functional dependencies are often vital.

2. Language of Adatt

They allow functions that do not use all the arguments of the type-class, because func-
tional dependencies allow to derive the missing ones and thereby the instance to use. An
example is null in the Foldable example below. By using multiple parameters, only
the folding-functions, which are polymorphic in the type of the accumulator ’a, need to
be statically resolved, while other functions can be used via dictionaries:

class Foldable ’t ’e | ’t -> ’e where
declare tolist :: ’t -> [’e]
declare foldr :: (e => ’a -> ’a) -> ’a -> 't -> ’a

{-# static resolve foldr #-}

declare foldl :: (Pa -> ’e => ’a) -> ’a -> ’t -> ’a
{-# static resolve foldl #-}

declare elem :: Eq ’e => ’e -> ’t -> Bool
declare size :: ’t -> Natural
declare null :: ’t -> Bool

end-class

While the main purpose of functional dependencies is to support type-class constants
that do not use all argument types, they can also simplify typechecking. By providing
additional information they mitigate the need for explicit type annotations. Only the
non-derived arguments are used to determine the instance. Derived arguments provide
extra information for the typechecker. In the example of Foldable ’t ’e above, only
the argument ’t is used to determine the instance. The argument ’e is used as extra in-
formation for the typechecker. For the term elem x [y] (without any type information
for x or y) the system can for example figure out, that [y] is of type List ’a (where
’a is a fresh type variable). With this information, the instance for lists is found, which
contains the information that the argument ’t of the type-class is instantiated to ’a.
Therefore the type of x is derived to be ’a. Without the functional dependency ’t ->
‘e, the term elem x [y] could not be type-checked. Adatt would search for an instance
Foldable [’a] ’b, which cannot be found, since the list instance has type Foldable
[’a] ’a. To make the term typecheck, extra type-annotations would be needed: elem
(x :: ’a) [y :: ‘’al.

Functional dependencies often provide sufficient extra information for comfortable
typechecking. In the rare cases when this is not sufficient, unification constraints can
be used with type-class instances. As an example, consider the type-class Dot. It is
a purely syntactic type-class for the inline operator ., which is used for e.g. function
composition:

class Dot ’a ’b ’c | ’a ’b -> ’c where
declare (.) :: ’a -> ’b —> ’c
end-class

2. Language of Adatt

As you can see, the type of the input have to be sufficient to derive the output type.
However, otherwise, there are no restrictions. To instantiate this type-class for function
composition, one could try:

instance Dot (°b -> ’c) (Pa -> ’b) (’a -> ’c) where
define (.) f1 f2 x := f1 (£f2 x)
end-instance

However, if the instance is defined like this, usually many type-annotations are needed.
The instance only fires if the first two arguments are functions such that the output
type of the second is the input type of the first one. Often this needs to be enforced by

explicit type annotations. For example Just . Just cannot be typechecked without
any additional type information. If type-wildcards are used to ensure that the input and
output type match this looks like (Just :: 1 ->) . (Just :: -> 1).

It is usually much more convenient that the instance should fire, when . is applied
to two functions. The type-checker should then try to unify the input and output types
automatically. If they cannot be unified, this should be reported as an error. One can
achieve this by abbreviating certain parts of the instance arguments with fresh type
variables and add constraints for these variables:

instance Dot (b -> ’c) (Pa -> ’b2) (’a -> ’c) | ’b2 -> ’b where
define (.) f1 f2 x := f1 (f2 x)
end-instance

One could even go further and force the usage of this instance whenever the first
argument is a function. Essentially, one can choose between flexibility with instances
and additional type-checking information.

instance Dot (°b -> ’c) ’f (Pa -> ’c) | ’f -> (’a -> ’b) where
define (.) f1 f2 x := f1 (£f2 x)
end-instance

Adatt’s unification constraints take the same role as Haskell’s type equality constraints
tyl ty2. However, due to simpler typechecker of Adatt, the left type of Adatt’s
unification constraints are always type variables. This simpler form suffices for Adatt’s
purposes.

2.1.4. Monads

Adatt supports monads via the type class shown above. There is do-notation for monads,
which uses this type-class. However, there are restrictions compared to languages like
Haskell. The monad type-class uses a higher kinded type-argument and therefore needs
to be statically resolved. This means that wherever monads and do-notation is used,
it needs to be possible to statically figure out during type-checking which monad is

2. Language of Adatt

used. This makes it a bit awkward to define auxiliary monad functions, which are very
common in languages like Haskell.

A typical example is mapM, a map function for monads. To define such a map function,
one could try the following (broken) definition:

declare mapM :: Monad ’M => (’a -> ’M ’b) -> [’a] -> °M [’b]

define rec mapM _ [] := return []
| mapM f (x:xs) :=
do
fx <- £ x;

fxs <- mapM f xs;
return $ fx : fxs
end

In this code-fragment, the Monad ’M cannot be resolved statically (which is e. g. required
by the do-notation). Therefore this code is invalid. Trying to declare mapM as inline and
thereby move the static resolving of the monad to the usage points of mapM fails as
well, because mapM is recursive. However, we can easily remove this recursion by using
a standard fold function. This results in:

declare mapM :: !'Monad M => (’a -> °M ’b) -> [’a] -> ’M [’Db]
define mapM f 1 :=
List.foldr (fn p q —->
bind p (fn x -> bind q (fn xs -> return (x:xs)))
) (return []) (map f 1)
{-# inline mapM #-}

This code defines a general mapM function that can be used conveniently inside Adatt.
However, there is still a problem when exporting code using this function to a theorem
prover or a programming language backend. The body of the function gets inlined at all
usage points. This obfuscates the generated code and makes it harder to reason about
it. This can be mitigated by introducing an auxiliary function to keep the structure of
mapM as much as possible while inlining the monad functions. A first, broken attempt
to achieve this might look like this:

declare mapM’
(M °b => (b -> M [’b]l) -> °M [’b])
-> (°M [’b] -> ([’b] -> °M [’b]) -> °M [’Db])
-> ([’b] -> °M [’b])
-> (’a -> ’M ’b)
-> [’a] -> ’M [’b]
define mapM’ bindl bindl ret £ 1 :=
List.foldr (fn p q —->
bindl p (fn x -> bindl q (fn xs -> ret (x:xs)))
) (ret [1) (map f 1)

2. Language of Adatt

declare mapM :: !Monad ’M => (’a -> ’M ’b) -> [’a] -> ’M [’b]
define mapM := mapM’ bind bind return
{-# inline mapM #-}

Unluckily, now the auxiliary function mapM’ uses the higher-kinded type variable M’
and can therefore not be exported to higher-order-logic. We could declare mapM’ as
inlined, but this would defy the purpose of introducing it in the first place. More
sensibly, we could relax the type of mapM’ by replacing M ’b and ’M [’b] with fresh
type variables.

declare mapM’
(C’mb -> (b -> ’mbs) -> ’mbs)
-> (’mbs -> ([’b] -> ’mbs) -> ’mbs)
-> ([’b] -> ’mbs)
-> (Pa -> ’mb)
-> [’a] -> ’mbs

So, there is some support for monads. Due to the restrictions of the target languages
this support is limited compared with languages like Haskell however. Using some tricks
and workarounds, it’s nevertheless possible to use monads without too much inconve-
nience.

2.1.5. Templates

The core function of Adatt is to translate specifications to text-based outputs for various
backends. To support this core function Adatt comes with a simple template language
inspired by languages like Liquid®| or Jinjafl Simple templates are just text with special
tags that are replaced with values, when the template is rendered. This is sufficient
for just mapping a constant or type to some target representation. However, Adatt’s
template language features a full programming language. It is a simple, imperative,
statically typed language with special support for text generation. There are variables
and common control structures like conditional execution or loops. Templates can call
other templates. This includes recursive calls. Since templates can also return data
values, these template-calls can take the role of function calls in other languages. There
are plenty a special build-in functions for text-output like functions for generating unique
names.

Besides rendering backend output, templates can also be used to generate Adatt input.
Parsing, basic typechecking and rendering code-templates are interleaved. Templates can
generate additional Adatt input which is parsed and typechecked in turn. This generated
code can contain arbitrary Adatt statements, including template definitions and code-
generation statements. The code-generation templates can access basic information

3https://shopify.github.io/liquid
‘https://jinja.palletsprojects.com

10

https://shopify.github.io/liquid
https://jinja.palletsprojects.com

2. Language of Adatt

about types, constants and classes. However, there are limitations: if a type or constant
is defined by code-generation it cannot extend or refine definitions outside the generated
code. So it is for example not possible to define some type constructors manually and
add further constructors via code generation. Moreover, code-generation happens at an
early stage of processing an Adatt module. This means that only basic information about
types, classes and constants defined within this module is available. Slightly simplified,
everything that requires type inference, is not available. It is for example possible to
access the names of the constructors of a datatype and the number of arguments of these
constructors. It is however not possible to access the types of the constructor arguments.
For normal constants, i.e. not fields and constructors, it is not even possible to get the
number of their arguments, because their type might be (partially) inferred. A positive
effect of generating code at an early stage of processing is that types and constants
defined via code-generation can be used in the same module outside the generated code.

The main usage of code-generation templates is automatically generating instances
for common type-classes. They are for example used to automatically derive instances
of the Eq type—classﬂ for newly defined data- or record-types via derive statements. How-
ever, one can use code-generation for arbitrary purposes. A trivial example is defining
abbreviation types for tuples whose elements all have the same type:

template BuildTupleAbbrev (n :: Nat) :=
>72type Tuple{{= n =}} \’a := {{=!BuildTuple(replicate(n, "’a"))=}}’’"’

generate—-code ’’’
{{% for var i := 2 to 9 %}}
{{! BuildTupleAbbrev(i) !}}
{{% end-for %}}

) I

In the code above, a template BuildTupleAbbrev is defined, which given a number
n emits code for defining an abbreviation type. It uses a build-in function replicate
to generate a list containing n-times "’a". Then a user-defined template BuildTuple
is called to turn this list into a tuple-representation as a String. In the generate-code
statement the template BuildTupleAbbrev is called multiple times inside a loop. These
statements generate the code:

~

)a)

’a, ’a)

’a, ’a, ’a)

’a, ’a, ’a, ’a)

’a, ’a, ’a, ’a, ’a)

’a, ’a, ’a, ’a, ’a, ’a)

)a’)a,)a’ >a, Ja, >a, Ja)
;a,)a,)a,)a’)a,)a’)a,)a)

type Tuple2 ’a :=
type Tuple3d ’a :=
type Tupled ’a :=
type Tupleb ’a :=
type Tuple6 ’a :=
type Tuple7 ’a :=
type Tuple8 ’a :=
type Tuple9 ’a :=

-

~
-

-~
-

-~
-

-

~
-

~
-

PP PP PR

-

~

AN NN A
-~

Swhich provides boolean equality

11

2. Language of Adatt
Templates can be registered to be used for generating type class instances (see Sec-
tion . This allows to use special syntax for generating instances. Examples are:
derive Maybe instances (Eq, EgP, Ord)

deriving instance Eq ’a => Eq (Maybe ’a)

2.1.6. List and Set-Comprehensions

Currently Adatt does not have any list- or set-comprehensions. However, there are
monad instances for lists and sets which allow to write something very close to list-
comprehensions in do notation. The Haskell list-comprehension

[(x, vy, 2) | x <= 11, let z=1f x, y <- 12, x > y]

for example becomes in Adatt’s do notation:

do
x <- 11;
z = x;
y <= 12;

guard (x > y);
return (x,y,z)
end

For the moment there are no plans to add list- or set-comprehensions to Adatt. This
would however be easy, because there is such a straightforward mapping to the existing
list- and set-monads.

2.1.7. Literals

Adatt supports char, string, natural number and decimal literals. These are implemented
via statically resolved type-classes. There are type-classes for each type of literal, which
contain a single function turning an internal representation of the literal into the target
type. By instantiating these type classes, users can add support for their own types.
Templates have special support for the internal representation. This allows the definition
of proper backend representations of all user-defined literal types.

2.1.8. Default values

Each type in Adatt needs to be inhabited. When defining a new type, Adatt tries to
compute a default-value for this type. If this computation fails, an error message is
produced. This automatically defined value, which is present for all types is available
via the special construct ?77.

2.1.9. Language Server Protocol

12

3. Configuration

Adatt can be configured via system-wide, project-wide and directory-wide configuration
files as well as configuration-pragmas within source files. ...

13

4. Templates

Adatt contains a template language for producing backend output, but also for gener-
ating input for Adatt that gets processed again. Adatt’s template language is inspired
by languages like LiquidF_-] or Jinjaﬂ. It features a simple, statically typed imperative
language aimed at producing text.

Simple templates are text with special tags. Such simple templates might be used
for e.g. for the backend representation of an Adatt constant. The template is used to
generate text by replacing the tags with text. This process is called rendering. As very
simple template example is *?’2 + 5 = {{= 2 + 5 =}}’’’. It uses a single tag {{=
2 + 5 =}}. This tag is replaced during rendering with the computed value 7 thereby
resulting in the output 2 + 5 = 7. Templates also feature control structures, various
formatting functions, generation of fresh names, (recursive) template calls

4.1. types of tags and templates

statement tags

The most basic and most general type of tag are statement tags. All other tag-types can
be simulated using statement tags. They are enclosed in double curly brackets (i.e. {{
... }}), where the brackets are followed by a space. Template statements are usually
used to change the state somehow. One can e.g. declare variables or assign values
to them. However, there are also print-statements that output text. Moreover, there
are control structures like conditional-execution or loops. Omne can also render other
templates.

print expression tags

One very common operation is inserting values into the text. Print expression tags are
tags enclosed in double curly brackets qualified with = (i.e. {{= e =}}). They evaluate
the expression e and print it. If there are newlines produced by the expression, they are
automatically indented. This means that all lines start in the same column the print
expression tag starts. The print expression tag {{= e =}} is short for the statement
tag {{ printWithIndent(e) }}.

https://shopify.github.io/liquid
Zhttps://jinja.palletsprojects.com

14

https://shopify.github.io/liquid
https://jinja.palletsprojects.com

4. Templates

block tags

Many statements require whole blocks of templates as arguments. Typical examples
are control structures like conditional execution or loops. In order to avoid the need to
express the whole templates in this block with statements, one can use block tags. One
very common operation is inserting values into the text. Block tags are tags enclosed in
double curly brackets qualified with % (i.e. {{% ... %}}). There is at least an opening
and a matching closing block tag. Some tags allow addition tags (e. g. else-tags branches
for conditional execution tags). And example for a template using block tags is:

{{% if (cond) %}}
true-case

{{= e =}}

{{% else %}}
false-case

{{% end-if %}}
Using a statement tag, this example template could be expressed as

{{ if (cond) {
println("true-case");
printlnWithIndent (e);

} else {
println("false-case");

I,

Statement tags usually open new variable scopes, i. e. template variables defined within
such a block are not accessible outside the block. The only exception are name-scopes
(see below).

call template tags

To render another template and include its result text, call template tags can be used.
These are tags qualified by ! (i.e. {{!templateName(args)'}})). This can be simu-
lated by statement templates, that evaluate the called template, throw away all return
values except the produced text and print this text.

template types

Templates can call (render) other templates. As call template tags show, this is fre-
quently used to insert the text produced by another template. However, templates can
also used like functions in common programming languages. Such templates don’t pro-
duce any text, but just return values. Such templates consist of just a list of statements,
which may not include print statements.

15

4. Templates

4.2. template expressions

Template statements like variable assignments or prints use expressions as arguments.
As usual, these expressions are used to compute values. They are mostly side-effect
free. The only exception is marking names as used when generating fresh names (see
below). However, there is nothing like e. g. an increment operator that changes the value
of a variable as side-effect. Adatt templates are statically typed. To explain template
expressions, we need to discuss template types first.

4.2.1. template types

Bool
boolean value, i.e. True or False

Char
single unicode character

String
unicode string, in many respects this behaves like a list of characters

Nat
Natural numbers of arbitrary size, i.e. whole numbers starting at 0. There are no
negative numbers. When using counters in for-loops this sometimes needs to be
taken into consideration.

The Nat type corresponds to the BuildInNum type in Adatt’s specification lan-
guage. It can be used to format literals of this type for various backends. For this
purpose, the default encoding base is also available for numbers of type Nat. If the
number comes from some literal input, the base is the base of this encoding (e. g.
0xO0A returns base 16 while input 11 returns base 10). If the number was created
via some computation, the default base is always 10.

Decimal
Positive rational number. The name Decimal is slightly misleading, because in-
ternally quotients are used. So in the internal representation numbers like 1/3
are represented exactly. However, input for numbers of type Decimal are decimal
literals (e.g. 10.3212).

The Decimal type corresponds to the BuildInDecimal type in Adatt’s specifica-
tion language. It can be used to format literals of this type for various backends.

ConstID
reference to some constant from an Adatt module. The name can be pretty-
printed taking the local namespace of the location it is printed in consideration.
Perhaps more interestingly, some information can be looked up (e.g. the number
of arguments of the constant).

16

4. Templates

TypelD
reference to some type from an Adatt module. The name can be pretty-printed
taking the local namespace of the location it is printed in consideration. Perhaps
more interestingly, some information can be looked up (e.g. the constructors of a
datatype).

ClassID
reference to some type from an Adatt module. The name can be pretty-printed
taking the local namespace of the location it is printed in consideration.

TemplatelD(template-signature)

reference to a template. These can be used to call the template. That way they
act like function pointers. Because templates are statically typed, the signature
of the template needs to be provided. Signatures are given in the form arg type
1-> ... -> arg type n —-> result type. The result type is special. It can
be any normal template type (including tuple types). This indicates a templates
producing values of the given type but not producing text. To indicate templates
producing text there is a special type Text, which means not returning any other
results, and a special tuple type, whose first component is Text.

Type
a full Adatt type. It can be pretty-printed. Notice that TypeID is a reference to
a type (e.g. Maybe). It can be used to lookup information about the type. In
contrast Type is a concrete type with all arguments applied (e.g. Maybe ’a). It
can only be pretty-printed.

Term
a full Adatt term. It can be pretty-printed. Notice that ConstID is a reference to
a constant. It can be used to lookup information about the type. In contrast Term
is a term. This means it can be a constant, a constant applied to arguments or
even things like case-expressions. It can only be pretty-printed.

()

unit value, used in rare places for technical reasons

(tyl, ..., tyn)
tuple type. Two or more types can be combined to form a type for tuples of the
given element number and element types.

[ty]
list of elements of given type
4.2.2. Type Coercion

Template types can be coerced into other types. This often happens automatically, when
e.g. assigning values of mismatching types to variables or when calling a build-in tem-
plate function. Moreover coercions are possible using the syntax coerce(target-type,

17

4. Templates

expression). Values of type Nat can be coerced to Decimal and a value of any type can
be coerced to String. A tuple or list can be coerced to another one, if all the elements
can be coerced.

4.2.3. Literals

Bool literals
True, False

Nat literals
Natural number literals can be encoded base 10, base 16 (prefix 0x), base 8 (prefix
0o) or base 2 (prefix Ob). Examples all representing the statement value are 12,
0x0C, 0014, 0b1100.

Decimal literals
Decimal number literals may only be given in base 10 using dots as decimal sepa-
rator. An example is 12.5. Notice that 12.0 is a Decimal literal, whereas 12 is a
Num literal.

Char literals
Char literals are enclosed in single quotes. Examples are ’a’ or ’b’. Common
escape sequences can be used. Examples are \n’, ’\’’ or ’\t’. By using the
syntax ’\nnnn’ it is also possible to give chars by using their unicode number.
’\120° is for example representing the char ’x’.

String literals
String literals are enclosed in double quotes. Examples are "abcdef" or "Hello
world". Common escape sequences can be used. These are the same escape
sequences as for character literals.

unit literals

0)

tuple literals
tuples can be written enclosed in parenthesis with the elements separating by
commata. Examples are (1) or (1, "a", ’b’, 12.5).

list literals
lists can be written enclosed in brackets with the elements separating by commata.
Examples are [1] or [1, 2, 3]. The empty list can be represented by []
type. Notice that an explicit type annotation is needed for the empty list.

4.2.4. Functions and Attributes

Template expressions can use infix, prefix and postfix functions. These functions can be
overloaded to have different meanings for different argument types. Prefix functions take

18

4. Templates

a list of arguments in parenthesis. There might be default values for certain arguments.
Postfix functions are written as attributes, i. e. directly after an expression separated by

Arithmetic Functions

|

True, False

19

A. Grammar

Character Classes

(opChar) = V5]
RN

(letterChar) n= a2 AL 2

(digitChar) n= 0. |9

(identChar) = (letterChar) | (digitChary | *_ | <’

Identifiers and Operators

(ident) = (letterChar) (identChar)*
(identList) = (ident) | (ident) *,’ (identList)
(ident2) = (ident) | (ident) ‘. (ident)
(ident2List) = (ident?2) | (ident2) *,’ (ident2List)
(idents) = (ident) | (ident) ‘. (idents)
(oper) = (opChar)+

(identOrOper) == (ident) | ‘C (oper))’

(identOrOperList) = (identOrOper) | (identOrOper) *,’ (identOrOperList)

(identifier) = (ident2) | *C (oper))’
(operator) = (oper) | * (ident2) ¢’
(namespaceldent) ::= [(‘const’ | ‘type’ | ‘class’ | ‘template’) | (identOrOper)

20

Literals

(unitLiteral)
(charLiteral)
(stringLiteral)

(natLiteral)

(decimalLiteral)

(literal)

Types
(typeVar)

(typeVarList)
(type Wildcard)
(type Unit)
(typeList)

(type)

(type Constraint)

A. Grammar

4()7
©27 char ¢’

‘(n? ‘tn?

string

‘Ob’ binary number
‘0o’ octal number
decimal number
‘0x’ hex number

decimal number ‘.’ decimal number

(stringLiteral)
(charLiteral)
(unitLiteral)
(natLiteral)
(decimalLiteral)

7 (ident)

(typeVar) | (typeVar) <, (typeVarList)

(3]

(()7
(type) | (type) *,’ (typeList)

(typeVar)
(identifier) (type)*
(type) ‘=>7 (type)
4[7 <typ€> c]v

“C (typeList))’

(V'] (identifier) (typeVar)*

(typeConstraintList) ::= (typeConstraint) | (typeConstraint) *,” (typeConstraintList)

(type Constraints)

i (typeConstraint) | < C (typeConstraintList))’

21

A. Grammar

Patterns

(pat Wild) =)

(patVar) = (ident)

(patTuple) = ‘(" (patternList))’

(patList) = ‘[’ (patternList) ‘1’

(pat Typed) = (pattern) ‘:: (type)

(patAs) = (ident) ‘@ (pattern)

(patApp) = (pattern) (pattern) | (pattern) (operator) (pattern) | (operator)
(pattern)

(patRecord) = ‘<|” (patRecordFieldList) ‘1>’

(patRecordField) ::= (identifier) ‘=" (pattern)

(patRecordFieldList) ::= (patRecordField) | (patRecordField) ¢,” (patRecordFieldList)

(patParen) n= ‘(C (pattern) ‘)’
(patternList) = (pattern) | (pattern) *,” (patternList)
(pattern) = (patWild)
| (patVar)
| (literal)
| (patTuple)
| (patList)
| (patAs)
| (patRecord)
| (patApp)
| (patTyped)
| (patParen)
Let-Patterns
(letpat Wild) =
(letpat Var) = (ident)
(letpat Typed) = ‘C (letPattern) ‘::’ (type))’
(letpat Tuple) := ‘C (letPatternList) ‘)’

22

A. Grammar

(letPatternList) ::= (letPattern) | (letPattern) ‘," (letPatternList)
(letPattern) = (letpat Wild)
| (letpatVar)
| (letpat Typed)
| (letpatTuple)
Terms
(termVar) = (ident)
(termTuple) = (terms))’
(termList) = ‘[(terms) ‘1’
(term Typed) = (term) ‘::7 (type)
(termApp) = (term) (term) | (term) (operator) (term) | (operator) (term)
(termRecord) = <|” (termRecordFieldList) ‘|>’

| <|” (identifier) ‘with’ (termRecordFieldList) ‘|>’
(termRecordField) ::= (identifier) ‘:=" (term,)

(termRecordFieldList) ::= (termRecordField) | (termRecordF'ield) *,’ (termRecordFieldList)

(termParen) = (term))’
(termCond) = ‘Af’ (term) ‘then’ (term) ‘else’ (term)
(termLambda) = ‘fn’ (letPattern)+ ‘=>’ (term)
(letBinding) = ‘var’ (letPattern) ‘=" (term,)
| ‘fun’ (ident) (letPattern)+ ‘=" (term)
(termLet) = ‘let’ (letBinding)* ‘in’ (term) ‘end’
(quant) = ‘forall’|‘exists’|‘uexists’| ‘bforall’| ‘bexists’| ‘buexists’
(termQuant) = (quant) (letPattern)+ ‘." (term)

(termBoolCasesCond) ::= (term) ‘=> (term)
| ‘otherwise’ ‘=>’ (term)
| 4—7 6_>7 <term>

(termBoolCasesConds) ::= (termBoolCasesCond) | (termBoolCasesCond) ‘|’ (termBoolCasesConds)

23

A. Grammar

(termBoolCases) :: ‘cases’ (termBoolCasesConds) ‘end’

(termCaseRow) = (pattern) | ‘when’ (term) | ‘=>" (term)

(termCaseRows) = (termCaseRow) | (termCaseRow) ‘|’ (termCaseRows)
(termCase) ;0 ‘case’ (term) ‘of’ (termCaseRows) ‘end’

(termDo) i1 ‘do’ (termDoRows) ‘end’

(termDoRows) :: (termDoRowStatement) | (termDoRow) ©;’ (termDoRows)
(termDoRow) :: (termDoRowLet) | (termDoRowBind) | (termDoRowStatement)
(termDoRowLet) :: (letPattern) ‘:=" (term)

(termDoRowBind) :: (letPattern) ‘<=’ (term)

(termDoRowStatement) :: (term)

[

(terms) = (term) | (term) *,’ (terms)

(term) termVar)
literal)
term Tuple)

termList)

(

(

(

(

(

(term Typed)
(termParen)
(termCond)
(termLambda)
(
(termQuant)
(
(
(

termBoolCases)
termCase)

Pragmas

(pragmaNoPrelude) ::= ‘NoImplicitPrelude’

(pragmalssue) ::= ‘ERROR’ string
| ‘WARNING’ string
| ‘INFO’ string
| ‘HINT string
| ‘TODO’ string

24

A. Grammar

(severityNoError) ::= ‘warning’

| ‘warn’

| ‘info’

| ‘hint’
(severity) = ‘error’

| ‘err’

| (severityNoError)
severityMaybe = (severit

yMay Y

| (>

| ‘ignore’
namingConventionDeclaration) ::= ‘reset’

g
severityMaybe
yMay

| (severity) ‘"’ description ‘"’ ‘"’ regularExp ‘"’
(pragmaNamingConvention) ::= ‘NAMING-CONVENTION’ name (namingConventionDeclaration)
(pragmaAllowSimilarNames) ::= ‘ALLOW-SIMILAR-NAMES’ (nameList)
(namelList) = ‘"’ name ‘"’

| " name ‘"’ ‘," (namelList)
(pragmaSeverity) = ‘severity’ problem (severityMaybe)

| ‘severity’ problem ‘reset’
(pragmalnline) := ‘inline’ (namespaceldent)
(pragmaStaticResolve) ::= ‘static resolve’ (namespaceldent)
(showHide) ::= ‘show’

‘ ‘On’

| ‘hide’

| ‘off’

(pragmaReporting) ::= ‘reporting’ [(severityNoError)] (showHide)

(pragmaDebug) ::= ‘debug on’
| ‘debug off’
(pragmaNumLiteralBoundaries) ::= ‘set-num-literal-boundaries’ (numLiteralBound)
(numLiteralBound)
(numLiteralBound) ::= decimal number

| (o

25

A. Grammar

(pragmaTemplateSteps) ::= ‘template-render-steps’ ‘reset’
| ‘template-render-steps’ decimal number

(pragma WarningsGeneratedCode) ::= ‘warnings-in-generated-code’ (‘on’ | ‘off’| ‘reset’)
(pragmaMinimal) ::= ‘minimal’ (memberGroups)
(memberGroups) ::= (identOrOperList)
| (identOrOperList) ‘;’ (memberGroups)
(pragma) (pragmaNoPrelude)
| (pragmaSeverity)
| (pragmaNamingConvention)
| (pragmalnline)
| (pragmaStaticResolve)
| (pragmalssue)
| (pragmaReporting)
| (pragmaDebug)
| (pragmaWarningsGeneratedCode)
| (pragmaNumLiteralBoundaries)
| (pragmaTemplateSteps)
| (pragmaMinimal)
Statements
(stmtPragma) = {-#" (pragma) ‘#-}
(stmtAlias) = ‘alias’ (identOrQOper) ‘:=" (identifier)
(recDecl) = empty | ‘rec’ | ‘mutual-rec’ ‘(’ (identOrOperList))’
(stmtDeclare) = ‘declare’ [‘non-exec’| (identOrOper) | ‘::" [(typeConstraints)
=>" {type) |
(stmtDefineClause) ::= (identOrOper) (pattern)* | ‘when’ (term) | ‘:=" (term)
(stmtDefineClauses) ::= (stmtDefineClause)
| (stmtDefineClause) ‘|’ (stmtDefineClauses)
(stmtDefine) ::= ‘define’ [‘non-exec’] (recDecl) (stmtDefineClauses)
(stmtTest) = ‘test’ [(typeConstraints) ‘=>’] (ident) (letPattern)™ ‘:=" (term)
stmtProperty = ‘property’ [(typeConstraints) ‘=>"] (ident) (letPattern)* ‘:=" (term
property

26

(stmtClass)

(functionalDeps)

(functionalDep)

(uniConstraints)

(uniConstraint)

(stmtInstance)

(stmtType)

A. Grammar

= ‘class’ [(typeConstraints) ‘=>"] (ident) (typeVar)* ['|” (functionalDeps)]
‘where’
(simpleStatement)™*
‘end-class’

= (functionalDep)
| (functionalDep) *,’ (functionalDeps)

= (typeVarList) ‘=>" (typeVarList)

= (uniConstraint)
| (uniConstraint) *,” (uniConstraints)

= (typeVarList) ‘=>" (type)
= ‘instance’ [(typeConstraints) ‘=>"] (ident2) (type)™ [‘|” (uniConstraints)]‘'where
(simpleStatement)™

‘end-instance’

= ‘type’ [‘non-exec’| (recDecl) (ident) (typeVar)* [‘:=" (type)]

(stmtDatatypeClause) = (ident) (type)*

(stmtDatatypeClauses) ::= (stmtDatatypeClause)

(stmtDatatype)

| (stmtDatatypeClause) ‘|’ (stmtDatatypeClauses)

¢

= ‘datatype’ [‘non-exec’] (recDecl) (ident) (typeVar)* ‘:=
(stmtDatatypeClauses)

)

(stmtRecordtypeField) ::= (ident) ‘::’ (type)

(stmtRecordtypeFields) ::= (stmtrRecordtypeField)

| (stmtDatatypeField) ¢, (stmtDatatypeFields)

(stmtRecordtype) = ‘recordtype’ [‘non-exec’] (recDecl) (ident) (typeVar)* ‘:=" (ident)
C< |)
(stmtRecordtypeFields)
“I> [‘deriving’ ‘(" (deriveGoals) ‘)’ |
(stmtConstructorFamily) ::= ‘constructor-family’ (identOrOper) ‘(' (identOrOperList)
DY [)]
(stmtTemplate) = ‘template’ (ident) ‘C’ (templateArgList) ‘)’ [‘::" TemplateType

1= template statements 7207 template bod
¢) L{{? p (}}’ ¢) p y

4;);’)

27

A. Grammar

stmtRegister Template) ::= ‘register-derive-template’ (ident) (ident?2 ident?2
g
(_] [Las7 (no 1abe1 (no]
(stmtDerive) = ‘derive’ (ident2) ‘instances’ ((ident2) | ‘C (identList) ‘)’) |
‘via’ ‘"’ label ‘"’]
(stmtDeriving) = ‘deriving’ ‘instance’ [(typeConstraints) ‘=>’] (ident2) (type)* |
‘via’ ‘"’ label ‘"’ |

(simpleStatement) ::= (stmtDeclare)
| (stmtDefine)
| (stmtTest)
| (stmtProperty)
| (stmtPragma)

(statement) = (simpleStatement)

| (stmtClass)

| (stmtInstance)

| (stmtType)

| (stmtDatatype)

| (stmtRecord)

| (stmtAlias)

| (stmtConstructorFamily)
| (stmtTemplate)

| (stmtRegister Template)

| (stmtDerive)

|

stmtDeriving)

Modules

(moduleName) = (idents)

(modulePart) = ‘part’ (ident) ‘+’ number
| ‘part’ (ident) ‘=’ number

(import) = ‘import’ [‘qualified’] (moduleName) [‘as’ (ident)] [[‘hiding’]
(moduleImportEzports) |
(moduleImportExport) ::= (identifier) [‘(..)"]

(moduleImportExportList) ::= (moduleImportEzport) ‘,’ (moduleImportExportList)

(moduleImportExports) == ‘(" ‘)’
| C (moduleEzxportList) ‘)’

28

A. Grammar

(module) = ‘module’ (moduleName) [(modulePart) | | (moduleImportEzports)
| ‘where’
((import) | (pragma))*
((statement) | (pragma))
‘end-module’

*

29

	Motivation
	Language of Adatt
	Noteworthy features of Adatt
	Module System
	Partial and extensible definitions
	Type Classes
	Monads
	Templates
	List and Set-Comprehensions
	Literals
	Default values
	Language Server Protocol

	Configuration
	Templates
	types of tags and templates
	template expressions
	template types
	Type Coercion
	Literals
	Functions and Attributes

	Grammar

